CITY OF REDONDO BEACH HARBOR COMMISSION AGENDA Tuesday, October 27, 2020

THIS VIRTUAL MEETING IS HELD PURSUANT TO EXECUTIVE ORDER N-29-20 ISSUED BY GOVERNOR NEWSOM ON MARCH 17, 2020.

SPECIAL MEETING OF THE HARBOR COMMISSION - 6:30PM

ALL COMMISSION MEMBERS ARE PARTICIPATING BY VIRTUAL MEETING. MEMBERS OF THE PUBLIC MAY ONLY PARTICIPATE BY ZOOM, EMAIL OR eCOMMENT.

Harbor Commission meetings are broadcast live through Spectrum Cable, Channel 8, and Frontier Communications, Channel 41. Live streams and indexed archives of meetings are available via internet. Visit the City's office website at www.Redondo.org/rbtv.

TO WATCH MEETING LIVE ON CITY'S WEBSITE: https://redondo.legistar.com/Calendar.aspx *Click "In Progress" hyperlink under Video section of meeting

TO WATCH MEETING LIVE ON YOUTUBE: https://www.youtube.com/c/CityofRedondoBeachIT

TO JOIN ZOOM MEETING (FOR PUBLIC COMMENT ONLY):

Register in advance for this meeting:

https://us02web.zoom.us/webinar/register/WN_zTXdYzPWT8yrXyF7PakVFQ

After registering, you will receive a confirmation email containing information about joining the meeting.

If you are participating by phone, be sure to provide your phone # when registering. You will be provided a Toll Free number and a Meeting ID to access the meeting. Note; press # to bypass Participant ID. Attendees will be muted until the public participation period is opened. When you are called on to speak, press *6 to unmute your line. Note, comments from the public are limited to 3 minutes per speaker.

eCOMMENT: COMMENTS MAY BE ENTERED DIRECTLY ON WEBSITE AGENDA PAGE: 1) Public comments can be entered before and during the meeting.

2) Select a SPECIFIC AGENDA ITEM to enter your comment;

3) Public will be prompted to Sign-Up to create a free personal account (one-time) and then comments may be added to each Agenda item of interest.

4) Public comments entered into eComment (up to 2200 characters; equal to approximately 3 minutes of oral comments) will become part of the official meeting record. Comments may be read out loud during the meeting.

EMAIL: TO PARTICIPATE BY WRITTEN COMMUNICATION WITH ATTACHED DOCUMENTS BEFORE 3PM DAY OF MEETING:

Written materials that include attachments pertaining to matters listed on the posted agenda received after the agenda has been published will be added as supplemental materials under

SPECIAL MEETING OF THE HARBOR COMMISSION - 6:30 PM

- A. CALL MEETING TO ORDER
- B. ROLL CALL
- C. SALUTE TO THE FLAG
- D. APPROVE ORDER OF AGENDA

E. BLUE FOLDER ITEMS - ADDITIONAL BACK UP MATERIALS

Blue folder items are additional back up material to administrative reports and/or public comments received after the printing and distribution of the agenda packet for receive and file.

E.1. For Blue Folder Documents Approved at the Harbor Commission Meeting

F. CONSENT CALENDAR

Business items, except those formally noticed for public hearing, or discussion are assigned to the Consent Calendar. The Commission Members may request that any Consent Calendar item(s) be removed, discussed, and acted upon separately. Items removed from the Consent Calendar will be taken up under the "Excluded Consent Calendar" section below. Those items remaining on the Consent Calendar will be approved in one motion following Oral Communications.

- F.1. <u>APPROVAL OF AFFIDAVIT OF POSTING FOR THE HARBOR COMMISSION</u> MEETING OF OCTOBER 27, 2020.
- G. EXCLUDED CONSENT CALENDAR ITEMS
- I. ITEMS CONTINUED FROM PREVIOUS AGENDAS
- J. ITEMS FOR DISCUSSION PRIOR TO ACTION
- J.1. DISCUSSION REGARDING THE DREDGING OF KING HARBOR

CONTACT: STEPHEN PROUD, WATERFRONT & ECONOMIC DEVELOPMENT DIRECTOR

K. MEMBER ITEMS AND REFERRALS TO STAFF

L. ADJOURNMENT

The next meeting of the Redondo Beach Harbor Commission will be a regular meeting to be held at 6:30 p.m. on November 9, 2020, in the Redondo Beach Council Chambers, at 415 Diamond Street, Redondo Beach, California via teleconference.

It is the intention of the City of Redondo Beach to comply with the Americans with Disabilities Act (ADA) in all respects. If, as an attendee or a participant at this meeting you will need special assistance beyond what is normally provided, the City will attempt to accommodate you in every reasonable manner. Please contact the City Clerk's Office at (310) 318-0656 at least forty-eight (48) hours prior to the meeting to inform us of your particular needs and to determine if accommodation is feasible. Please advise us at that time if you will need accommodations to attend or participate in meetings on a regular basis.

An agenda packet is available 24 hours at www.redondo.org under the City Clerk.

Administrative Report

E.1., File # HC20-1603

Meeting Date: 10/27/2020

<u>TITLE</u>

For Blue Folder Documents Approved at the Harbor Commission Meeting

Administrative Report

F.1., File # HC20-1602

Meeting Date: 10/27/2020

TO: HARBOR COMMISSION

FROM:STEPHEN PROUD, WATERFRONT & ECONOMIC DEVELOPMENTDIRECTOR

<u>TITLE</u>

APPROVAL OF AFFIDAVIT OF POSTING FOR THE HARBOR COMMISSION MEETING OF OCTOBER 27, 2020.

ATTACHMENTS

AFFIDAVIT OF POSTING FOR OCTOBER 27, 2020 HARBOR COMMISSION MEETING

Waterfront & Economic Development Department 415 Diamond Street Redondo Beach, CA 90277 tel 310-372-1171 fax 310-937-6621

STATE OF CALIFORNIA) COUNTY OF LOS ANGELES) CITY OF REDONDO BEACH)

AFFIDAVIT OF POSTING

SS

In compliance with the Brown Act, the following materials have been posted at the locations indicated below.

Legislative Body	Harbor Commission
Posting Type	Special Meeting Agenda
Posting Locations	415 Diamond Street, Redondo Beach, CA 90277 ✓ City Hall Kiosk
Meeting Date & Time	October 27, 2020, 6:30 pm

As the W.E.D. representative at the City of Redondo Beach, I declare, under penalty of perjury, the document noted above was posted at the date displayed below.

Laurie Koike, Manager

Date: October 20, 2020

Administrative Report

Meeting Date: 10/27/2020

TO: HARBOR COMMISSION

FROM:STEPHEN PROUD, WATERFRONT & ECONOMIC DEVELOPMENTDIRECTOR

<u>TITLE</u>

DISCUSSION REGARDING THE DREDGING OF KING HARBOR RECOMMENDATION

Receive and file staff presentation on dredging process for King Harbor.

BACKGROUND

Over the past 30 years, King Harbor has been dredged on two occasions. The first dredging was done by the City in 1989 to address significant shoaling that occurred in the aftermath of the 1988 storm; and the second dredging was conducted by the City in the Winter/Spring of 2005 (January - March). The primary reason the Harbor requires dredging is the natural flow of beach sand is from north to south and as the sand moves southward it migrates through the breakwater and into the Harbor. The breakwater, designed by the Army Corps of Engineers to absorb wave action, is porous and allows significant amounts of sand into the Harbor where it builds up at various locations.

The Harbor is currently experiencing significant shoaling that requires maintenance dredging to maintain navigability and to ensure boater safety. The shoaling is most evident along the inside length of the main breakwater for the Harbor and some additional shoaling is occurring at the entrance to Basin III.

The City hired Noble Consultants to assist with the evaluation, planning, and permit acquisition for the King Harbor Maintenance Dredging Project. Initially, the City was looking to partner with the Army Corps of Engineers ("ACOE") on portions of the harbor dredging, as the ACOE may need to dredge portions of the harbor to conduct repairs to the main breakwater. While we remain optimistic that the City may be able to partner with the ACOE on their breakwater repair project, no firm commitments have been made by the ACOE at this time and the timeline for the breakwater repairs are uncertain. Consequently, the City is moving the King Harbor Maintenance Dredging Project forward as a standalone project.

To date, the City prepared and presented the Sampling and Analysis Plan (SAP) outlining sediment sampling results and proposed sediment placement locations on March 25, 2020 to the Southern California Dredged Material Management Team (SC-DMMT). The SC-DMMT provided comments and feedback on the draft SAP. The City presented the revised SAP to the SC-DMMT on May 27,

2020 and received approval to move forward with the proposed locations to place dredge spoils for the project, which is an important first step in the process.

The next steps are for the City to prepare Plans & Specifications and obtain permits from the various regulatory agencies (Environmental Protection Agency, the Department of Fish and Game, the California Coastal Commission, US Army Corps of Engineers, US Fish & Wildlife, the LA Regional Water Quality Control Board, and the State Lands Commission). The City submitted an application to the ACOE and the Los Angeles Regional Water Quality Control Board in early August 2020. The ACOE has issued a Public Notice for comments on the application with the comment period closing on October 29, 2020 (the application materials are attached to this report). Since this project involves routine dredging maintenance of less than 100,000 CY, it is exempt from coastal development permits, is considered ministerial, and thereby is believed to be categorically exempt from CEQA (CCR 15300.1). Nevertheless, the timeframe for these activities is estimated to take up to 12 months.

The City's harbor does not qualify for federal funding to assist with dredging because it does not rise to the level of commercial activity required for such funding by the US Army Corps of Engineers. If the City is able to forge a partnership with the ACOE on the breakwater project, there may be an opportunity to realize cost savings on the harbor dredging as the two parties coordinate their work effort. Since it remains unclear if those savings will materialize, and the City has not identified another source of funding for the dredging, City staff will continue to explore federal and state opportunities for potential sources of funding that may offset the dredging cost.

The City's Capital Improvement Program included \$500,000 for preliminary engineering, permitting, environmental review and design in FY 2017-18 and proposes a total of \$2.2M for Harbor Dredging implementation/construction in FY 2021-22 and FY 2022-23.

ATTACHMENTS

ACOE Submittal Letter ACOE Application ACOE Attachments to Application

Administrative Report

Meeting Date: 10/27/2020

TO: HARBOR COMMISSION

FROM:STEPHEN PROUD, WATERFRONT & ECONOMIC DEVELOPMENTDIRECTOR

<u>TITLE</u>

DISCUSSION REGARDING THE DREDGING OF KING HARBOR RECOMMENDATION

Receive and file staff presentation on dredging process for King Harbor.

BACKGROUND

Over the past 30 years, King Harbor has been dredged on two occasions. The first dredging was done by the City in 1989 to address significant shoaling that occurred in the aftermath of the 1988 storm; and the second dredging was conducted by the City in the Winter/Spring of 2005 (January - March). The primary reason the Harbor requires dredging is the natural flow of beach sand is from north to south and as the sand moves southward it migrates through the breakwater and into the Harbor. The breakwater, designed by the Army Corps of Engineers to absorb wave action, is porous and allows significant amounts of sand into the Harbor where it builds up at various locations.

The Harbor is currently experiencing significant shoaling that requires maintenance dredging to maintain navigability and to ensure boater safety. The shoaling is most evident along the inside length of the main breakwater for the Harbor and some additional shoaling is occurring at the entrance to Basin III.

The City hired Noble Consultants to assist with the evaluation, planning, and permit acquisition for the King Harbor Maintenance Dredging Project. Initially, the City was looking to partner with the Army Corps of Engineers ("ACOE") on portions of the harbor dredging, as the ACOE may need to dredge portions of the harbor to conduct repairs to the main breakwater. While we remain optimistic that the City may be able to partner with the ACOE on their breakwater repair project, no firm commitments have been made by the ACOE at this time and the timeline for the breakwater repairs are uncertain. Consequently, the City is moving the King Harbor Maintenance Dredging Project forward as a standalone project.

To date, the City prepared and presented the Sampling and Analysis Plan (SAP) outlining sediment sampling results and proposed sediment placement locations on March 25, 2020 to the Southern California Dredged Material Management Team (SC-DMMT). The SC-DMMT provided comments and feedback on the draft SAP. The City presented the revised SAP to the SC-DMMT on May 27,

2020 and received approval to move forward with the proposed locations to place dredge spoils for the project, which is an important first step in the process.

The next steps are for the City to prepare Plans & Specifications and obtain permits from the various regulatory agencies (Environmental Protection Agency, the Department of Fish and Game, the California Coastal Commission, US Army Corps of Engineers, US Fish & Wildlife, the LA Regional Water Quality Control Board, and the State Lands Commission). The City submitted an application to the ACOE and the Los Angeles Regional Water Quality Control Board in early August 2020. The ACOE has issued a Public Notice for comments on the application with the comment period closing on October 29, 2020 (the application materials are attached to this report). Since this project involves routine dredging maintenance of less than 100,000 CY, it is exempt from coastal development permits, is considered ministerial, and thereby is believed to be categorically exempt from CEQA (CCR 15300.1). Nevertheless, the timeframe for these activities is estimated to take up to 12 months.

The City's harbor does not qualify for federal funding to assist with dredging because it does not rise to the level of commercial activity required for such funding by the US Army Corps of Engineers. If the City is able to forge a partnership with the ACOE on the breakwater project, there may be an opportunity to realize cost savings on the harbor dredging as the two parties coordinate their work effort. Since it remains unclear if those savings will materialize, and the City has not identified another source of funding for the dredging, City staff will continue to explore federal and state opportunities for potential sources of funding that may offset the dredging cost.

The City's Capital Improvement Program included \$500,000 for preliminary engineering, permitting, environmental review and design in FY 2017-18 and proposes a total of \$2.2M for Harbor Dredging implementation/construction in FY 2021-22 and FY 2022-23.

ATTACHMENTS

ACOE Submittal Letter ACOE Application ACOE Attachments to Application

August 4, 2020

JN 625-16

U.S. Army Corps of Engineers Attn: Regulatory Branch Los Angeles District 915 Wilshire Blvd. Los Angeles, CA 90017

Re: King Harbor Maintenance Dredging For City of Redondo Beach

Dear Regulatory Branch:

Please find enclosed a completed Permit Application with attachments for the above-referenced project.

Please call me at (415) 246-4595 if you have any questions.

Sincerely,

Ronald M. Noble, P.E., D.CE, D.PE, D.WRE, Dist.M.ASCE

RMN/rmn Attachments

cc: Andrew Winje, City of Redondo Beach Geraldine Trivedi, City of Redondo Beach Wenkai Qin, Noble Consultants, Inc.

U.S. Army Corps of Engineers (USACE)
APPLICATION FOR DEPARTMENT OF THE ARMY PERMIT
33 CFR 325. The proponent agency is CECW-CO-R.

Form Approved -OMB No. 0710-0003 Expires: 02-28-2022

The public reporting burden for this collection of information, OMB Control Number 0710-0003, is estimated to average 11 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate or burden reduction suggestions to the Department of Defense, Washington Headquarters Services, at whs.mc-alex.esd.mbx.dd-dod-information-collections@mail.mil. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR APPLICATION TO THE ABOVE EMAIL.

PRIVACY ACT STATEMENT

Authorities: Rivers and Harbors Act, Section 10, 33 USC 403; Clean Water Act, Section 404, 33 USC 1344; Marine Protection, Research, and Sanctuaries Act, Section 103, 33 USC 1413; Regulatory Programs of the Corps of Engineers; Final Rule 33 CFR 320-332. Principal Purpose: Information provided on this form will be used in evaluating the application for a permit. Routine Uses: This information may be shared with the Department of Justice and other federal, state, and local government agencies, and the public and may be made available as part of a public notice as required by Federal law. Submission of requested information is voluntary, however, if information is not provided the permit application cannot be evaluated nor can a permit be issued. One set of original drawings or good reproducible copies which show the location and character of the proposed activity must be attached to this application (see sample drawings and/or instructions) and be submitted to the District Engineer having jurisdiction over the location of the proposed activity. An application that is not completed in full will be returned. System of Record Notice (SORN). The information received is entered into our permit tracking database and a SORN has been completed (SORN #A1145b) and may be accessed at the following website: http://dpcld.defense.gov/Privacy/SORNsIndex/DOD-wide-SORN-Article-View/Article/570115/a1145b-ce.aspx

(ITEMS 1 THRU 4 TO BE FILLED BY THE CORPS)					
1. APPLICATION NO.	2. FIELD OFFICE CODE		3. DATE RECEIVED	4. DATE	APPLICATION COMPLETE
	(ITEMS BELOW TO BE	FILLED BY AP	PLICANT)		ан санана са К
5. APPLICANT'S NAME		8. AUTHORIZ	8. AUTHORIZED AGENT'S NAME AND TITLE (agent is not required)		
First - Andrew Middle - S.	Last - Winje	First - Ronald	Middle Middle	-M	Last - Noble
Company - City of Redondo Beach		Company - N	oble Consultants-G.E	E.C., Inc.	
E-mail Address - Andrew.Winje@redondo.	org	E-mail Address - rnoble@nobleconsultants.com			
6. APPLICANT'S ADDRESS:		9. AGENT'S	ADDRESS:		
Address- 415 Diamond Street		Address- 220	1 Dupont Drive, Ste	830	
City - Redondo Beach State - CA	Zip - 90277 Country - USA	City - Irvine	State - C	CA Zi	ip - 92612 Country - USA
7. APPLICANT'S PHONE NOS. W/AREA COD	E	10. AGENTS	PHONE NOs. w/AREA	CODE	
a. Residence b. Business (310) 318-0661	c. Fax	a. Residence	b. Busines (415) 240		c. Fax (949) 752-8381
	STATEMENT OF	AUTHORIZAT	ION		
	11. I hereby authorize, <u>Ronald M. Noble</u> to act in my behalf as my agent in the processing of this application and to furnish, upon request, supplemental information in support of this permit application.				
N	AME, LOCATION, AND DESCRI	PTION OF PRO	JECT OR ACTIVITY		
12. PROJECT NAME OR TITLE (see instructi King Harbor Maintenance Dredging Proj	,				
13. NAME OF WATERBODY, IF KNOWN (if a	14. PROJEC	T STREET ADDRESS (i	fapplicable	e)	
Pacific Ocean: south end of Santa Monica Bay, King Harbor		Address King Harbor			
15. LOCATION OF PROJECT					
Latitude: •N 33.8428 Longi	tude: •W 118.3953	City - Redon	ido Beach S	State- CA	Zip- 90277
16. OTHER LOCATION DESCRIPTIONS, IF KNOWN (see instructions)					
State Tax Parcel ID None	Municipality				
Section - Township		Rang	e -		
ENG FORM 4345, FEB 2019	PREVIOUS ED	DITIONS ARE C	BSOLETE.		Page 1 of 3

From Los Angeles, take I-405 S toward Long Beach; Take exit 42B for Inglewood Ave; Follow Inglewood Ave, W 190th St and N Beryl St to the parking lot of the project site.

18. Nature of Activity (Description of project, include all features)

The City of Redondo Beach proposes to conduct maintenance dredging within King Harbor, specifically (1) all 60,000 cubic yards (cy) of sediments along the breakwater of King Harbor to a depth of -18 feet MLLW plus a 2-foot over dredge depth (OD) allowance and (2) 2,000 cy of sediment within Basin 3 entrance channel to a depth of -15 feet MLLW plus a 2-foot OD allowance. The total proposed dredge volume is 62,000 cy including the 2-foot OD allowance. The proposed placement for the dredged materials up to approximately 29,000 cy within the In-Harbor Placement site and approximately 33,000 cy within the USACE's temporary nearshore placement site. The locations of the proposed dredge areas are shown in Figure 2, and the proposed placement areas are shown in Figure 4 of Attachment A. These final placement locations for the dredged materials were presented to the SC-DMMT at their May 27, 2020 meeting with no objections. For details, see Attachment A: "Project Description" and Attachment B: "Drawings", which were both prepared by Noble Consultants-GEC, Inc, and Attachment C: "Sampling and Analysis Plan Report, Sediment Characterization Study" that was prepared by Wood.

19. Project Purpose (Describe the reason or purpose of the project, see instructions)

The purpose of the King Harbor Maintenance Dredging Project is to return the harbor to design navigational draft depth and to provide safe vessel access by removing shoals that have accumulated within King Harbor.

USE BLOCKS 20-23 IF DREDGED AND/OR FILL MATERIAL IS TO BE DISCHARGED

20. Reason(s) for Discharge

Based on the Sediment Characterization Study conducted by Wood, the dredged material, in the total amount of 62,000 cy, will be placed at the two areas including: (1) up to 29,000 cy at the In-Harbor (IH) Placement site and (2) approximately 33,000 cy within the USACE's temporary nearshore placement site. The dredged material/discharge plan was optimized by considering the grain size compatibility and the chemistry compatibility between the dredged material and the sediment characteristics in the placement sites. These final placement/discharge plans for the dredged materials were presented to the SC-DMMT at their May 27, 2020 meeting with no objections. For details, see Attachment A: "Project Description" and Attachment B: "Drawings", which were both prepared by Noble Consultants-GEC, Inc, and Attachment C: "Sampling and Analysis Plan Report, Sediment Characterization Study" that was prepared by Wood.

21. Type(s) of Material Being Discharged and the Amount of Each Type in Cubic Yards:							
Type Amount in Cubic Yards	Type Amount in Cubic Yards	Type Amount in Cubic Yards					
Sand, 62,000 cubic yards	Sand, 62,000 cubic yards						
22. Surface Area in Acres of Wetlands or Other Wat	ers Filled (see instructions)						
Acres 8							
or							
Linear Feet							
23. Description of Avoidance, Minimization, and Con	npensation (see instructions)						
	npensation (see instructions)						

24 Is Any Portion of the l	Work Alroady Complete?				
24. Is Any Portion of the Work Already Complete?					
25. Addresses of Adjoinir	ng Property Owners, Lesse	es, Etc., Whose Property A	djoins the Waterbody (if more	than can be entered here, please atta	ch a supplemental list).
a. Address- 280 Yacht	Club Way				
City - Redondo Beach		State - (CA	Zip - 90277	
b. Address- 665 N Harb	or Dr				
City - Redondo Beach		State - (CA	Zip - 90277	
c. Address- 181 N Harb	or Dr				
City - Redondo Beach		State - 0	CA	Zip - 90277	
d. Address- 209 N Harb	oor Dr				
City - Redondo Beach		State - (СА	Zip - 90277	
e. Address- 135 Interna	ational Boardwalk				
City - Redondo Beach		State - (СА	Zip - 90277	
26. List of Other Certifica	ates or Approvals/Denials re		State, or Local Agencies fo	r Work Described in This App	blication.
AGENCY	TYPE APPROVAL*	IDENTIFICATION NUMBER	DATE APPLIED	DATE APPROVED	DATE DENIED
CA Water Boards	Section 401	N/A	July 2020		
CA State Lands	Use of state lands	<u>N/A</u>	July 2020		
* Would include but is not	t restricted to zoning, building	ng, and flood plain permits			
				ertify that this information in t or am acting as the duly autl	
applicant.					5
SIGNATUR		<u>8/3/2020</u>	SIGNATU	IRE OF AGENT	DATE
The Application must b	be signed by the person	who desires to undertak has been filled out and sig	e the proposed activity (a	applicant) or it may be sig	
			-		
				partment or agency of the al fact or makes any false	
statements or represer	ntations or makes or use	es any false writing or do	cument knowing same to	o contain any false, fictitio	
statements or entry, sh	nall be fined not more the	an \$10,000 or imprisone	d not more than five year	rs or both.	

201 Alameda Del Prado, Suite 301 Novato, CA 94949 (415) 884-0727 Fax (415) 884-0735 Ronald M. Noble, P.E., President DESIGN

Attachment A

Project Description by Noble Consultants, Inc.

ATTACHMENT A

PROJECT DESCRIPTION

KING HARBOR MAINTENANCE DREDGING PROJECT

Prepared for:

City of Redondo Beach Public Works Department, Engineering Services Division 415 Diamond Street, Door E Redondo Beach, California 90277

July 10, 2020

Prepared by:

Noble Consultants, Inc. 2201 Dupont Drive, Ste 830, Irvine, CA 92612

PROJECT DESCRIPTION KING HARBOR MAINTENANCE DREDGING PROJECT

1 INTRODUCTION

King Harbor occupies approximately 150 acres of land and water at the southern end of Santa Monica Bay in Redondo Beach. Located approximately 17 miles southwest of the business center of the City of Los Angeles, and about 7 miles south of the Los Angeles International Airport, King Harbor primarily services small vessels. The harbor extends approximately 3/4 of a mile along the coast and is roughly 0.4 miles wide at the widest point. King Harbor was established in the early 20th century as a commercial port. However, after the Port of Los Angeles became fully operational, King Harbor shifted its focus to recreational craft and fishing boats. Beneficial uses of King Harbor waters include industrial service supply, navigation, water contact recreation, non-contact water recreation, commercial and sport fishing, marine habitat, wildlife habitat, preservation of rare and endangered species, and potentially shellfish harvesting. The vicinity map is shown in Figure 1.

Figure 1. Vicinity Map

The safe navigation of vessels within King Harbor, Redondo Beach is currently restricted by accumulated sediment shoals, creating a need for the maintenance dredging proposed by this project. The purpose of the King Harbor Maintenance Dredging Project is to return the harbor to design navigational draft depth and to provide safe vessel access by removing shoals that have accumulated within King Harbor.

2 PROPOSED MAINTENANCE DREDGING

The City is responsible for maintenance of the in-harbor, that includes the three boat basins and the wave protection baffles at the entrances to Basins 1 and 2. As part of its Operations and Maintenance program, the USACE is responsible for maintenance of the breakwaters. The last maintenance dredging occurred in 2004-2005, and consisted of dredging only 7,000 cubic yards of material.

2.1 Dredging Sites and Quantities

The maintenance dredging of King Harbor is proposed for two areas, as shown in Figure 2. Dredging Area I is the shoal fronting the north portion of King Harbor North Breakwater. Dredging Area II is the shoal fronting the inner portion of South Breakwater at the entrance of Basin 3. These two dredging areas are referred to as "Outer Harbor Dredging Area" and "Basin 3 Dredging Area", respectively, in the Sampling and Analysis Plan Report (SAPR) that was prepared by Wood Environment & Infrastructure Solutions, Inc. (Wood).

The proposed maintenance dredging depth for Dredging Area I is -18 feet MLLW, and the approximate dredging area is 4.1 acres. The estimated dredging quantity is approximately 45,500 cubic yards (cy) to the design depth and 60,000 cy when including the 2-foot over dredge depth (OD) to -20 feet MLLW. The proposed dredging depth for Dredging Area II is -15 feet MLLW, and the dredging area is approximately 0.35 acre. The estimated dredging quantity is 800 cy to the design water depth and 2,000 cy when including the a 2-foot OD allowance In total, the estimate dredging quantity for the two dredging areas is 60,000 cy to the design depth and 62,000 cy when including a 2-foot OD allowance. The breakdown in dredging quantities are listed in Table 1. The typical dredging cross-sections are shown in Figure 3.

Dredging Area	Dredging Area	Design Dredging	Estimat	ted Dredging Qu (cy)	antities
	(acres)	Depth (ft MLLW)	To Design Depth	2-foot OD	Total
Ι	4.11	-18	45,500	14,500	60,000
II	0.35	-15	800	1,200	2,000
Total	4.46	-	46,300	15,700	62,000

Table 1. Dredging Quantities

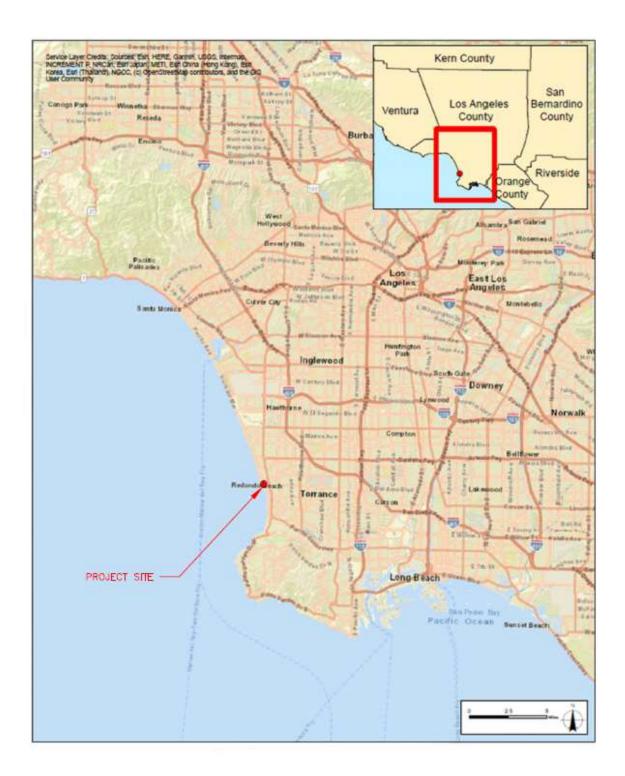
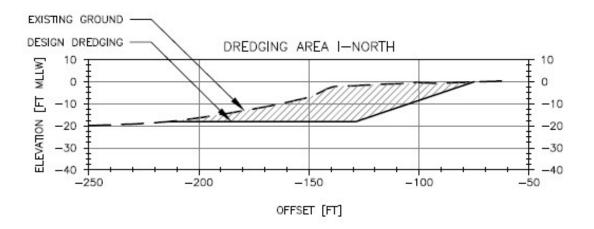
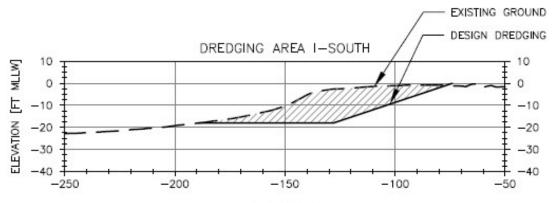




Figure 2. Plan View of Dredging Areas

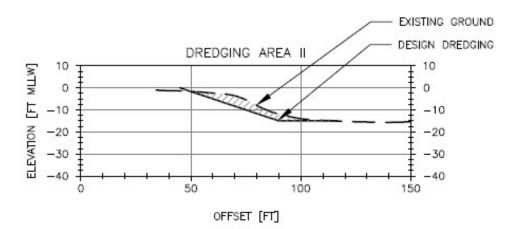


Figure 3. Typical Dredging Cross-Sections

2.2 Sediment Characterization Study

A detailed sediment characterization study has been conducted by Wood Environment & Infrastructure Solutions, Inc. for the proposed dredging areas and potential placement sites of the dredged material. They include Dredging Area I, Dredging Area II, the In-harbor placement site, and a temporary nearshore placement site. This nearshore placement site, located just 1,500 feet offshore of the nearby South Redondo Beach, has been approved as a borrow site for future beach nourishment activities by the Los Angeles County (County) and United States Army Corps of Engineers (USACE). The results are discussed in Attachment C: Sampling and Analysis Plan Report (SAPR), Sediment Characterization Study, which was prepared by Wood. Overall the Study findings concluded the following:

- Majority of samples collected in the dredging areas contain 80 percent or more sand.
- The dredged materials meet compatibility requirements for the temporary nearshore placement site (referred to as "outer harbor placement site" in SAPR) which was comprised of approximately 99 percent of sand.
- Based on the surficial samples collected in the In-harbor placement area, the portion of fines at this placement site is 47.5 percent fines, which is not compatible with the dredged material that contains approximately 4 to 10 percent of fines.
- Sediment chemistry for the temporary nearshore placement site do not have any elevated levels of chemicals. However, sediment chemistry for the In-harbor placement site does contain elevated levels of DDT's and PCB congeners, which is similar to the dredged materials from the south portion of Dredging Area I (composite areas OH-C and OH-D as defined in the SAPR).

2.3 Placement of Dredged Material

The placement sites that were considered for the dredged materials were: the In-harbor placement site, the temporary nearshore placement site, and direct beach placement.

In-Harbor Placement

The In-harbor placement site will act as a sediment sink in which the dredged material will fill in a depressed harbor entrance bottom area that currently has a deeper water depth. While the surficial samples collected in the In-harbor placement area are finer than the samples collected in the dredged areas, deeper sediments at this location are expected to be coarser and more like those collected within the dredged area. Although the dredged material may not physically be compatible with the surface sediments at the in-harbor placement site, the placement of the dredged material will prevent further scour and help maintain a more even depth in this area. In addition, sediment chemistry for the In-harbor placement site does contain elevated levels of DDT's and PCB congeners, which is similar to the dredged materials from the south portion of Dredging Area I. This indicates that the dredged materials at the south portion of Dredging Area I are more suitable for the In-harbor placement site. The location of this placement area is shown in Figure 4.

Figure 4. Plan View of Dredged Material Placement Areas

Direct Beach Placement versus Temporary Nearshore Placement

Since the completion of the Redondo Beach Widening project in 1968 and the construction of the Topaz Groin in 1969, Redondo Beach south of Topaz Groin has been stable ever since. However, the beach north of the Topaz Groin is erosive and needs periodic nourishments. Several beach nourishment projects have been implemented for the beach north of the Topaz Groin. Approximately 300,000 cy of sand dredged from the Marina del Rey was placed on this beach in the year 2000, and approximately 75,000 cy of sand, also dredged from Marina del Rey, was placed on the beach in 2012. A very small amount (approximately 7,000 cy) dredged material from King Harbor was also placed on this beach in 2004-2005. Based on the performance of these historical beach nourishment projects, it is concluded that Redondo Beach north of the Topaz Groin is in need of nourishment, however, it is best to replenish this beach with a large nourishment (>80,000 cy). A beach nourishment with 80,000 cy of sand would initially widen this beach by 40 to 50 feet. Placement of smaller quantities of sand on this beach will be quickly eroded and lost into the Redondo Canyon. The best practice is to stockpile the sand at the nearshore temporary placement site until funding and resources align for a major nourishment event.

During the 2004-2005 King Harbor dredging, the proposed and permitted dredging volume was approximately 56,500 cy and the dredged materials were proposed for placement on the Redondo Beach north of the Topaz Groin. However, the dredging was incomplete due to the presence of stone intermixed with the shoal material. The hydraulic dredge could not pump the sand/stone mixture to the beach placement area. Based on this lesson learned from the 2004-2005 dredging, it is not recommended to directly place the dredged material from King Harbor onto the beach due to the fact that the dredged material contain stones intermixed with the shoal material that are not suitable for beach nourishment without additional screening and treatment.

Alternatively, there is an approved nearshore disposal site that can be utilized as a temporary placement site for the dredged material of King Harbor. This temporary placement site is located approximately 1,500 feet offshore of Redondo Beach, as shown in Figure 4. This site was used as the borrow site for the 1968-1969 Redondo Beach Widening project, with 1.4 million cy of sand being dredged from this area and placed onto the Redondo Beach Reach. This area has been identified, evaluated, and approved as a borrow site by both the County and the USACE for beach nourishment at Redondo Reach. Part of the 2012 Marina del Rey dredged material, in the amount of approximately 82,000 cy, was last placed in this site. Recent surveys show that this site still has a capacity for the placement of 116,000 cy of sediment.

By placing King Harbor dredged material within this USACE's nearshore placement site, it will temporally reserve this material until funding and resources align for a major nourishment event that would likely be more effective and cost efficient, with less interruption to the public, than placements of smaller quantities of material in several episodic events. It will also allow for sediment to be more effectively screened for stones and other material unsuitable for beach nourishment before placing this material back onto Redondo Beach. Furthermore, beach operations in this part of the Santa Monica Bay are within the jurisdiction of LA County, not the City of Redondo Beach, and so any beach nourishment event would be subject to the approval of LA County, and in coordination with their long-term maintenance objectives. In addition, dredged

sediments placed within this nearshore temporary disposal site are still within the littoral zone and will not be lost down the Redondo Beach Submarine Canyon.

Based on the above considerations, it is strongly recommended that the identified 33,000 cy of King Harbor dredged material's placement into the temporary nearshore placement site is the optimal alternative when compared to its direct placement onto the beach.

Proposed Dredged Material Placement

It is proposed to place up to approximately 29,000 cy of the material dredged from the south portion of Dredging Area I (composite areas OH-C and OH-D as defined in SAPR) within the Inharbor placement site, and approximately 33,000 cy of the dredged material (comprised the north portion of Dredging Area I and Dredging Area II) within the USACE's temporary nearshore placement site. These final placement locations for the dredged materials were presented to the SC-DMMT at their May 27, 2020 meeting with no objections. The plan view of the dredged material placement areas is shown in Figure 4. The typical placement cross-sections are shown in Figure 5.

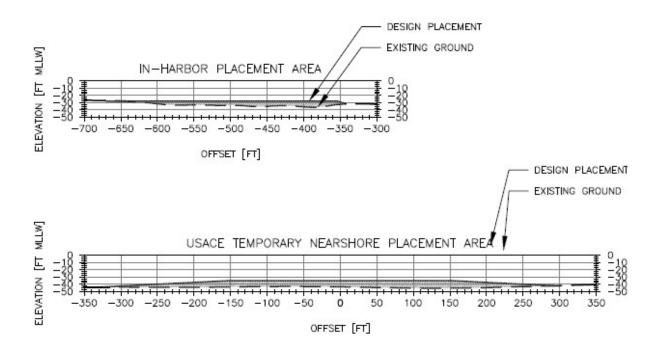


Figure 5. Typical Dredged Material Placement Cross-Sections

3 CONSTRUCTION EQUIPMENT AND SCHEDULE

This maintenance dredging project will be performed utilizing mechanical dredge equipment verses hydraulic dredge equipment due to the location and very limited area of the area being

dredged, and due to the potential for some larger size of dredged sediments. The expected dredge equipment will consist of the following:

- 1-barge of approximately 50 feet x 150 feet with a clam shell for dredging
- 1-2,000 to 3,000 cubic yard bottom dump scow of approximately 45 feet x 200 feet
- 1-1,500 horsepower tug boat

The estimated construction schedule to complete the maintenance dredging is approximately 20 days if working 24 hours per 7-day week; 40 days if working 12 hours per 7-day week; or 60 days if working 8 hours per 5-day week. The dredging will be performed outside of the seabass spawning season between July and September.

The final project construction plans and specifications will include a debris management plan that includes screening for stone size material, screening and removal of trash or other debris, and best management practices to reduce ecological impacts.

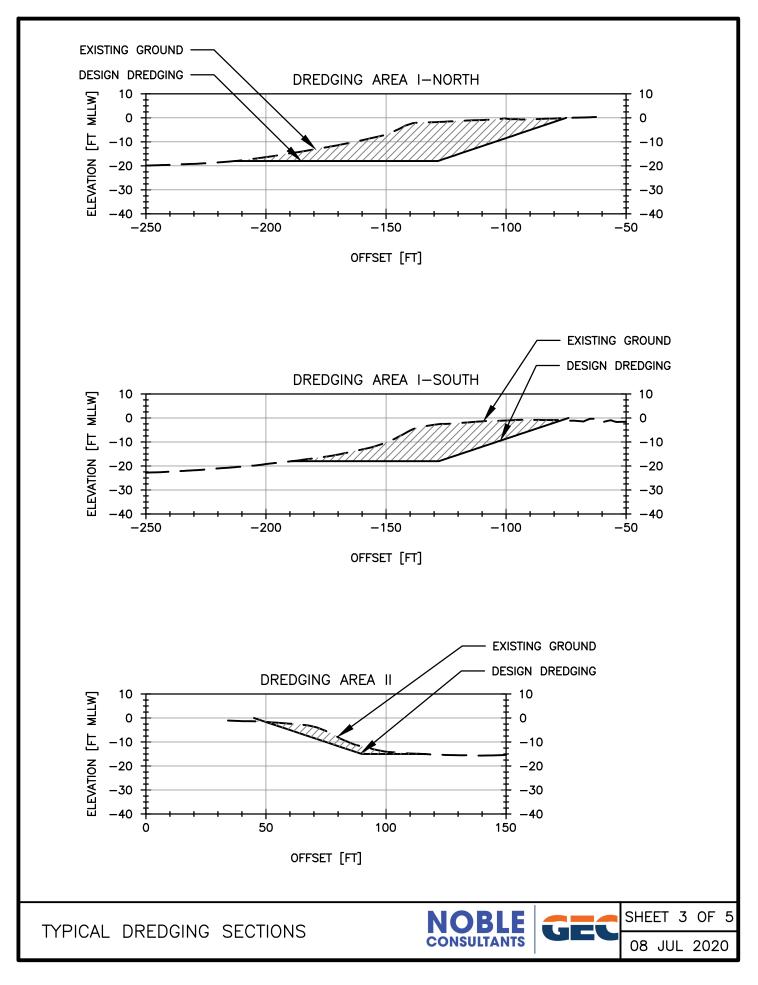
All construction activities will meet the requirements of the project's specifications and any regulatory permit conditions, and will follow the Best Management Practice (BMP) guidelines set forth in the Caltrans (2013) "Caltrans Storm Water Quality Handbooks, Construction Site Best Management Practices Manual". Additional measures identified in Attachment D: Biological Resources Report prepared by Chambers Group, Inc., in order to protect biological resources, will also be followed.

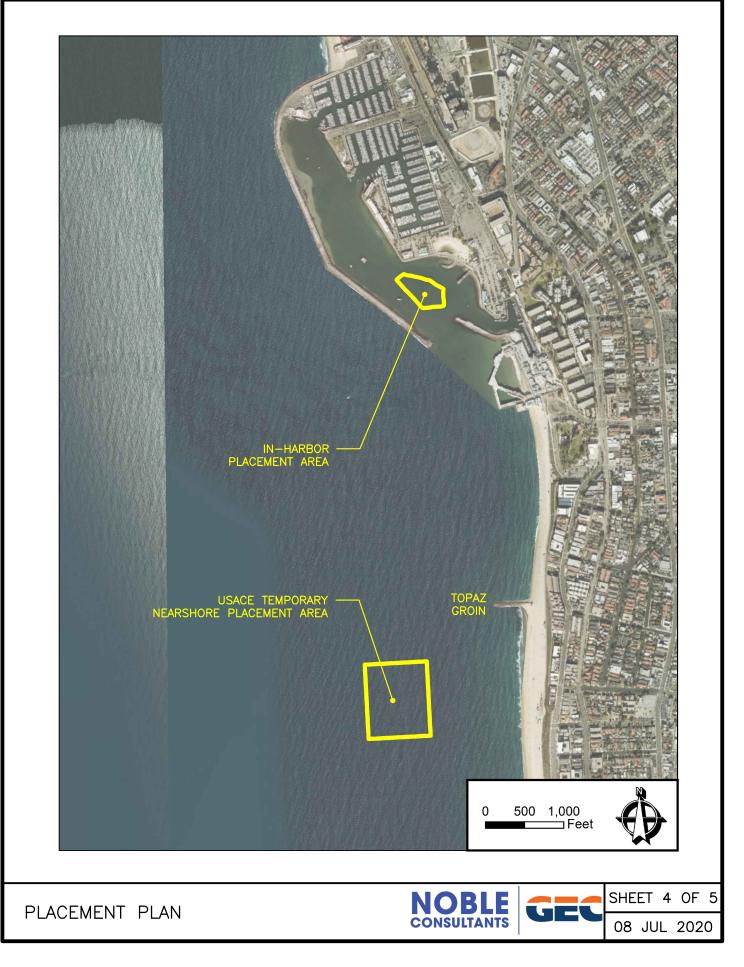
4 DRAWINGS

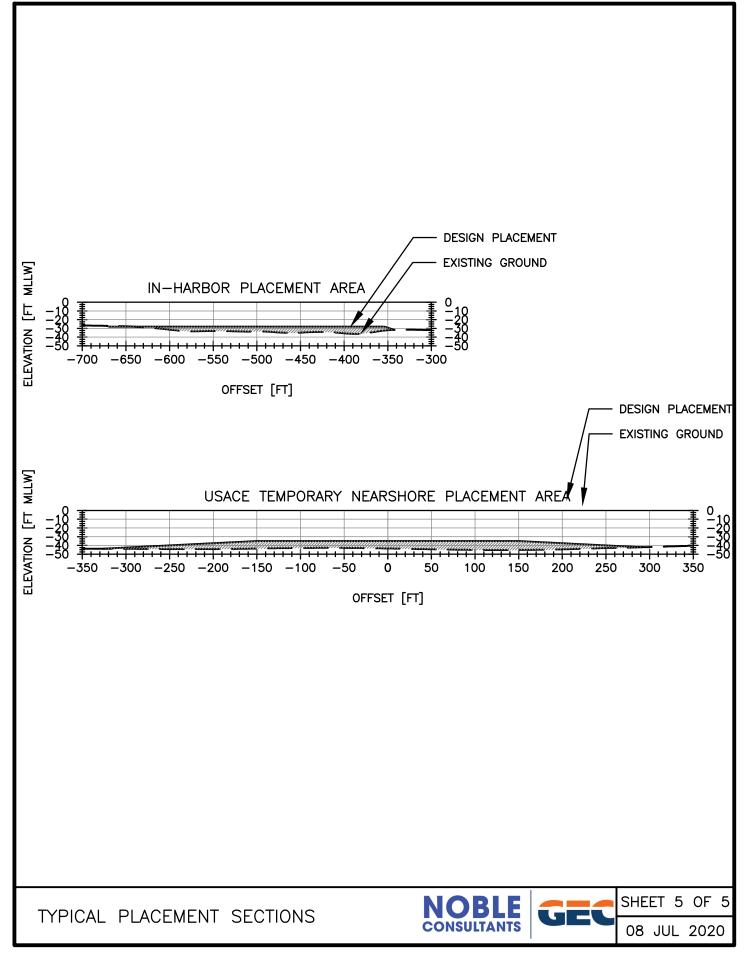
The full set of drawing plans, including a vicinity map, plan views of the dredging and placement sites, and the typical dredging and placement cross-sections, is included in Attachment B.

201 Alameda Del Prado, Suite 301 Novato, CA 94949 (415) 884-0727 Fax (415) 884-0735 Ronald M. Noble, P.E., President DESIGN

Attachment B


Drawings


by Noble Consultants, Inc.



201 Alameda Del Prado, Suite 301 Novato, CA 94949 (415) 884-0727 Fax (415) 884-0735 Ronald M. Noble, P.E., President

Attachment C

Final Sampling and Analysis Plan Report Sediment Characterization Study by Wood Environment & Infrastructure Solutions, Inc.

FINAL SAMPLING AND ANALYSIS PLAN REPORT SEDIMENT CHARACTERIZATION STUDY IN SUPPORT OF MAINTENANCE DREDGING IN KING HARBOR WITH POTENTIAL OUTER OR IN-HARBOR PLACEMENT

CITY OF REDONDO BEACH

Submitted to:

City of Redondo Beach Public Works Department, Engineering Services Division 415 Diamond Street, Door E Redondo Beach, California 90277

Submitted by:

Wood Environment & Infrastructure Solutions, Inc. 3560 Hyland Avenue Suite 100 Costa Mesa, California 92626

> 9210 Sky Park Court, Suite 200 San Diego, California 92123

Submitted: March 25, 2020 Revised and Resubmitted for Meeting: May 27, 2020

Wood Project Number: IR18166910

FINAL Sampling and Analysis Plan Report Sediment Characterization Study In Support of Maintenance Dredging in King Harbor with Outer or In-harborPlacement City of Redondo Beach Wood Project No. IR18166910 May 2020

TABLE OF CONTENTS

Page

1.0	INTRODUCTION1-1
	1.1 Project Summary1-1
	1.2 Site Description
	1.2.1 Document Purpose
	1.3 Roles and Responsibilities
2.0	SITE HISTORY AND HISTORICAL DATA REVIEW2-1
	2.1 King Harbor Dredging History2-1
	2.2 Outer Harbor Placement Site
3.0	METHODS
	3.1 Dredge Design
	3.2 Sampling Design
	3.2.1 Sample Collection Locations and Depths
	3.2.2 Vibracore Collection
	3.2.3 Van Veen Grab Sample Collection
	3.2.5 Deviations from SAP
	3.2.6 Equipment Decontamination
	3.2.7 Sediment Archiving
	 3.3 Sample Collection Documentation, Handling, and Delivery
	3.4 Physical and Chemical Analysis
	3.4.2 Chemical Analyses
4.0	
4.0	RESULTS
	4.1 Physical Analysis
	4.1.1 Dredging Areas
	4.1.2 Placement Aleas
	4.2 Dredging Areas
	4.2.2 Placement Areas
	4.3 Quality Assurance/Quality Control
5.0	CONCLUSIONS
	5.1 Discussion of Results
	5.2 Conclusions
	5.3 Summary of SC-DMMT Meeting March 25, 20205-7
	5.4 Summary of SC-DMMT Meeting May 27, 2020
6.0	REFERENCES
7.0	ACRONYMS AND ABBREVIATIONS

FINAL Sampling and Analysis Plan Report Sediment Characterization Study In Support of Maintenance Dredging in King Harbor with Potential Outer or In-harbor Placement City of Redondo Beach Wood Project No. IR18166910 May 2020

APPENDICES

APPENDIX A BIOLOGICAL RESOURCES REPORT FOR THE KING HARBOR MAINTENANCE DREDGING PROJECT APPENDIX B FIELD SAMPLE PHOTOGRAPHS APPENDIX C FIELD DATA LOGS APPENDIX D ANALYTICAL CHEMISTRY REPORTS APPENDIX E AGENCY CORRESPONDANCE

LIST OF TABLES

Table 1-1.	Key Project Personnel	1-8
Table 2-1.	Dredging Site History	
Table 2-2.	2004 Sediment Characteristics – King Harbor	
Table 3-1.	Proposed Dredging Locations and Placement Sites Areas and Volumes	3-1
Table 3-2a.	Vibracore Field Log Summary Table	3-15
Table 3-2b.	Grab Sample Field Log Summary Table	3-16
Table 3-2c.	Sample Location Adjustments	3-17
Table 3-3.	Analyses Methods of Sediment Samples	3-18
Table 4-1a.	King Harbor Grain Size Analysis Results	4-5
Table 4-1b.	King Harbor Analytical Chemistry Results	4-8
Table 5-1.	Response to Comments – Southern California Dredged Material	
	Management Team Meeting March 25, 2020	5-9

LIST OF FIGURES

Figure 1-1a.	Regional Location of the Project and Study	1-3
Figure 1-1b.	King Harbor Proposed Dredge Areas and Placement Sites	1-5
Figure 2-1a.	2004 King Harbor Historical Dredging and Placement Sites	2-3
Figure 2-1b.	2004 King Harbor Nearshore Replenishment Site	2-5
Figure 3-1a.	Actual Core Sampling Locations: Outer Harbor	3-7
Figure 3-1b.	Actual Core Sampling Locations: Basin 3 Channel	3-9
Figure 3-2a.	Actual Grab Sampling Locations: In-Harbor	3-11
Figure 3-2b.	Actual Grab Sampling Locations: Outer Harbor	3-13
Figure 5-1a.	Proposed Placement Options for Outer Harbor Dredged Material, King	
-	Harbor Maintenance Dredging City of Redondo Beach	5-3
Figure 5-1b.	Proposed Placement Options for Basin 3 Dredged Material, King Harbor	
-	Maintenance Dredging City of Redondo Beach.	5-5

FINAL Sampling and Analysis Plan Report Sediment Characterization Study In Support of Maintenance Dredging in King Harbor with Potential Outer or In-harbor Placement City of Redondo Beach Wood Project No. IR18166910 May 2020

1.0 INTRODUCTION

This document serves as the Sampling and Analysis Plan Report (SAP Report) for the sediment characterization study (Study) for the proposed City of Redondo Beach (City) Maintenance Dredging Project at King Harbor with Potential Outer Harbor or In-Harbor Placement (Project).

This Final SAP Report was presented to the Southern California Dredged Material Management Team (SC-DMMT) on March 25, 2020. The SAP Report was revised on May 20, 2020 and resubmitted for SC-DMMT review. Updates to the SAP Report included updates to the following items in the SAP Report:

- Figure 1-1b to show the location of the Redondo Submarine Canyon and other coastline features;
- Updates to Section 1.2 Site Description to include additional information for the outer harbor placement site;
- Updates to the beginning of Section 2.1 and the addition of Section 2.2 to include site history for the Outer Harbor Placement area/borrow site;
- Addition of Section 5.3 and Table 5-1 that include a summary of the March 25, 2020 SC-DMMT meeting and responses to comments.

1.1 Project Summary

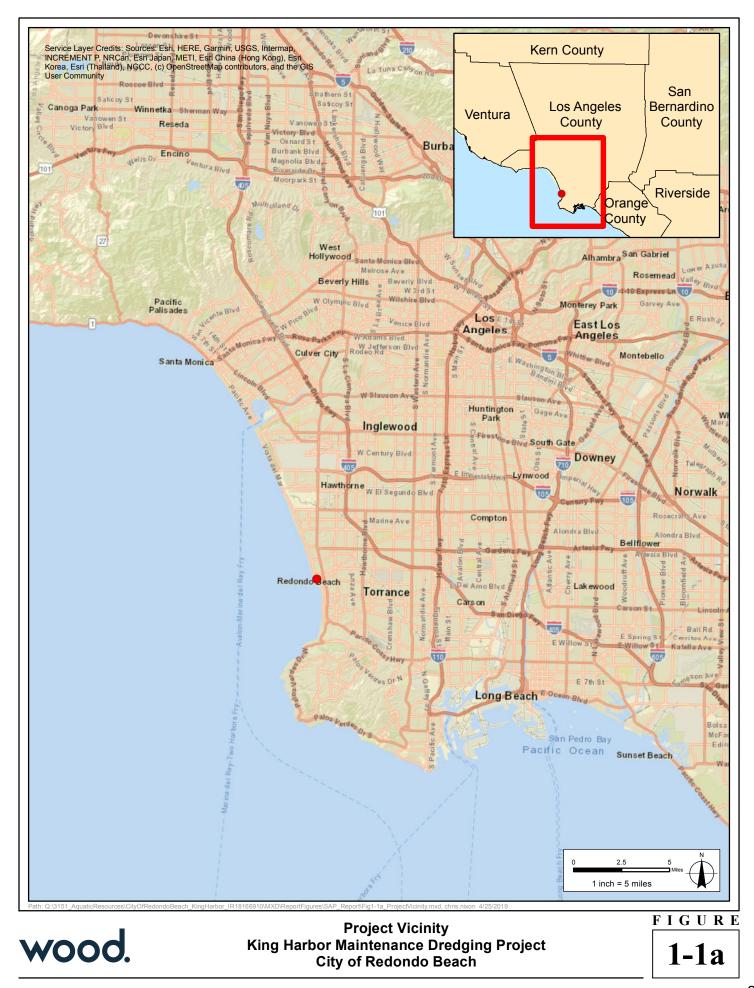
The safe navigation of vessels with King Harbor is currently restricted by accumulated sediment shoals, creating a need for the maintenance dredging proposed by the Project. The total dredge area for the Project is 193,433 square feet. The Study objective was to determine the best placement option within King Harbor for dredged sediments. Figure 1-1a shows the regional location of the Project and Study.

The Study involved collection and analysis of sediment samples from shoals that have formed in the Outer Harbor and Basin 3 Entrance Channel (Figure 1-1b). Sediments collected from the proposed dredge areas were evaluated for potential placement at two proposed nearshore areas including: 1) the In-Harbor (IH) and 2) the Outer Harbor (OH). The OH placement site is a Los Angeles County (County) and United States Army Corps of Engineers (USACE) approved borrow site located offshore of the nearby South Redondo Beach (Figure 1-1b). The Project-specific Sampling and Analysis Plan (SAP) outlined the procedures for collection and analysis of sediment in both the dredging and placement areas (Wood, 2019). The proposed dredge depths for the Project are -18 feet mean lower low water (MLLW) for the Outer Harbor and -15 feet MLLW for Basin 3. The total proposed dredge volumes for the Project are approximately 46,300 cubic yards (cy) to the design depth and 62,000 cy including the 2-foot overdredge (OD) to -20 feet MLLW for the Outer Harbor and -17 feet MLLW for Basin 3.

Nearshore placement of dredged material is primarily regulated under Section 404 of the Clean Water Act (CWA). The United States Environmental Protection Agency (USEPA) and United States Army Corps of Engineers (USACE) each administer specific aspects of Section 404, which established a permit program and technical guidelines to regulate discharges of dredged or fill material. The evaluation of a Section 404 permit application involves determining whether the

proposed project complies with 40 Code of Federal Regulations (CFR) 230 (Guidelines for Specification of Disposal Sites for Dredge or Fill Material) and USACE permit regulations (33 CFR 320-330). The nearshore replenishment site for Project dredged materials will be chosen by the City in consultation with the Southern California Dredged Material Management Team (SC-DMMT). The placement location for the Project will be selected based on the results of this Study.

1.2 Site Description


King Harbor occupies approximately 150 acres of land and water at the southern end of Santa Monica Bay in Redondo Beach. Located approximately 17 miles southwest of the business center of the City of Los Angeles and about 7 miles south of the Los Angeles International Airport, King Harbor primarily services small vessels. The harbor extends approximately 3/4 of a mile along the coast and is roughly 0.4 miles wide at the widest point.

King Harbor was established in the early 20th century as a commercial port. However, after the Port of Los Angeles became fully operational, King Harbor shifted its focus to recreational craft and fishing boats.

Beneficial uses of King Harbor in-harbor waters include industrial service supply, navigation, water contact recreation, non-contact water recreation, commercial and sport fishing, marine habitat, preservation of rare and endangered species, and potentially shellfish harvesting (Los Angeles Regional Water Quality Control Board [Regional Board], 2004). Beneficial uses for the outer harbor waters include navigation, water contact recreation, non-contact water recreation, commercial and sport fishing, marine habitat, wildlife habitat, and preservation of rare and endangered species (Regional Board, 2004). A recent biological resources report for this area is included as Appendix A to this SAPr.

The City is responsible for maintenance of the in-harbor that includes the three boat basins and the wave protection baffles at the entrances to Basins 1 and 2. As part of its Operations and Maintenance program, the USACE is responsible for maintenance of breakwaters.

The two placement locations considered for the Project consist of an In-Harbor depression that likely acts as a fine-grained sediment sink within King Harbor and an Outer Harbor placement site that has been historically used as a borrow site by the USACE. The Outer Harbor placement site is located to the south of the Topaz Groin and is part of the South Redondo Beach Reach, a moderate sized beach approximately 130 to 170 feet wide (Figure 1-1b). The Outer Harbor placement site is located approximately 0.75 miles from the head of the Redondo Submarine Canyon. The center of the Outer Harbor Placement/borrow site is approximately 0.3 miles from its center to the closest edge of the canyon offshore.

FINAL

FINAL Sampling and Analysis Plan Report Sediment Characterization Study In Support of Maintenance Dredging in King Harbor with Potential Outer or In-harbor Placement City of Redondo Beach Wood Project No. IR18166910 May 2020

This page intentionally left blank

wood.

Redondo Beach, California

This page intentionally left blank

In order to assess a suitable placement option, the sediments within the proposed dredge footprint were characterized in accordance with the USEPA and USACE's Inland Testing Manual ([ITM], 1998). The Study included the characterization of materials using a Tier II evaluation outlined in the ITM (USACE/USEPA, 1998). If the sediments are determined to be uncontaminated, in accordance with USEPA and USACE's ITM, the sediments are appropriate for nearshore placement.

The Study SAP (Wood, 2019) was presented to the SC-DMMT as part of the July 24, 2019 agenda. The SAP was approved with minor comments from the SC-DMMT and updated for final submittal on August 9, 2019.

1.2.1 Document Purpose

Wood Environment & Infrastructure Solutions, Inc. (Wood)¹ was contracted by the City under a sub-consultant agreement to Noble Consultants-GEC, Inc. (Noble) to prepare this SAPr, which includes the following elements:

- Project description and personnel;
- Site Maps Depictions of the Project collection locations;
- Vibracore and Grab Logs Collection coordinates, target and actual penetration, sediment characteristics (e.g., strata, color, odor) and photographic documentation;
- Methods and Materials All information pertaining to sample collection, handling, and analyses;
- Results Results of all physical, chemical, and elutriate analyses compared to applicable sediment quality and water quality guidelines;
- Quality Assurance/Quality Control (QA/QC) Information All raw data sheets, spike and recovery information, and internal QC audits;
- Conclusions; and
- References.

1.3 Roles and Responsibilities

Wood, under contract to Noble, was responsible for all Project elements and overall contract management. Key project personnel and their contact information are listed in Table 1-1. Certain services were provided by the following subcontractors:

- Six Scientific Service (SixSci)1 Vibracore and grab sampling equipment and operation;
- Leviathan Environmental Services1 Vessel operation and station positioning services;
- Eurofins Calscience Environmental Laboratories, Inc. (Eurofins Calscience)**2** Sediment chemical and physical analyses.

¹ Amec Foster Wheeler's parent company is now owned by Wood plc.

¹Leviathan Environmental Services and Six Scientific Services were used in place of Aquatic Blue and Pacifica due to scheduling conflicts.

² Eurofins Calscience is a laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP), the California Department of Public Health, and the United States Department of Defense Environmental Laboratory Accreditation Program (DoD-ELAP) (certificate No. L12-86-121).

Organization	Name	Title	Office Phone	Cellular Phone
City of Redondo Beach	Geraldine Trivedi	Department of Public Works Engineering Division	(310) 318-0661 Ext. 2036	N/A
Noble	Ron Noble	Professional Engineer	(415) 885-0727	N/A
Wood	Kim Holland	Wood Project Manager	(949) 574-7504	(310) 748-9157
Wood	Barry Snyder	Wood QA/QC Manager	(858) 300-4320	(858) 354-8340
Wood	Kimbrie Gobbi	Wood Field Manager	(858) 300-4326	(443) 852-4637
Wood	Leanne Hirsch	Wood Field Technician	(858) 300-4353	(352) 443-9719
Wood	Tyler Huff	Wood Health and Safety Manager	(858) 300-4322	(858) 449-2334
Leviathan Environmental ¹	Steve LaMothe	Vessel Captain	N/A	(925) 381-5813
Six Scientific Services ¹	Chris Clark	Vibracore Contractor	(760) 908-5753	(760) 908-5753
Eurofins Calscience ² Carla Hollowell		Laboratory Director	(714) 895-5494	(714) 904-5235

Table 1-1. Key Project Personnel

Notes:

N/A = not applicable

2.0 SITE HISTORY AND HISTORICAL DATA REVIEW

Site history and historical data was reviewed for both King Harbor dredging projects and the proposed Outer Harbor placement site. There is no known history specific to Basin 3 or the In-Harbor placement site.

2.1 King Harbor Dredging History

No significant dredging has been performed at King Harbor since the completion of the breakwaters in the late 1930s except for a one-time minor dredging of 7,600 cy on the harbor side of the south breakwater in 2004-2005 (Noble et al., 2017). Table 2-1 outlines the volumes and placement locations for prior dredging events. Dredging has been completed both mechanically and hydraulically, and dredged material has previously been approved for beneficial reuse including beach nourishment and nearshore placement based on coarse mean grain sizes and low concentrations of contaminants of concern. In 2004-2005, dredged material was placed near residences approximately 150 yards south of the pier (Moffatt & Nichol and Kinnetic Laboratories, Inc., 2011).

Dredging Year	Total Volume Dredged	Dredge Depth	Contaminants	Placement
	(cy)	(feet MLLW)	of Concern	(ocean, upland, beach, etc.)
2004-2005	~7,000	-18 in Dredge Areas I and III; -10 in Dredge Areas IIA and IIB	See Table 2-2	Nearshore Beach Placement in Tidal Zone

Table 2-1. Dredging Site History

Maintenance dredging depths vary across the harbor. In 2004, dredging was proposed and permitted to restore operational depths to -18 feet MLLW within Dredge Areas I and III and -10 feet MLLW in Dredge Areas IIA and IIB (Figure 2-1a). Dredged volume proposed for removal was approximately 56,500 cy in Dredge Areas I and III and was proposed for placement below the high tide line in a beach/surf zone deposition area approximately 1,000 feet south of the Redondo Beach Pier Complex to replenish the sandy beach (Figure 2-1b, Regional Board, 2004). In addition, a smaller amount of dredged material was proposed for hand-dredging using a very small hydraulic dredge by divers in Dredge Areas IIA and IIB (Figure 2-1a). Approximately 380 cy of dredged material from Dredge Area IIA was proposed for placement within an adjacent depression (G-1) approximately 250 feet away from the dredge site and 3,000 cy of dredged material from Dredge Area IIB was proposed for placement in a deep depression (G-2) located on the bottom of the main channel (Figure 2-1a).

Although proposed and permitted for dredging in 2004, only material from Dredge Area I (the Basin 3 entrance channel) and a small volume from Dredge Area II was completed (Figure 2-1a). Dredging from Dredge Area II was incomplete in 2004 due to of the presence of stone intermixed with the shoal material. The stone originated from the USACE breakwater road repair base material that was placed on the North Breakwater crest during their 1990's breakwater renovation project that raised crest elevation. The hydraulic dredge could not pump the sand/stone mix to

the beach placement area, so it was not removed. Material from both sites was placed within the beach nourishment site (Figure 2-1b).

Sediment Testing Results (2004)

Table 2-2 summarizes analytical testing results for the 2004 dredged material characterization study. Sediment collected from the dredged materials removed in 2004 were analyzed and evaluated to a depth of approximately -20 feet MLLW in Areas I and III and approximately -12 feet in Area II (the design depth plus a 2-foot OD allowance; Regional Board, 2004). Three composite samples representing Areas I, II, and III, respectively, were analyzed for trace metal and organic concentrations, and grain size characteristics.

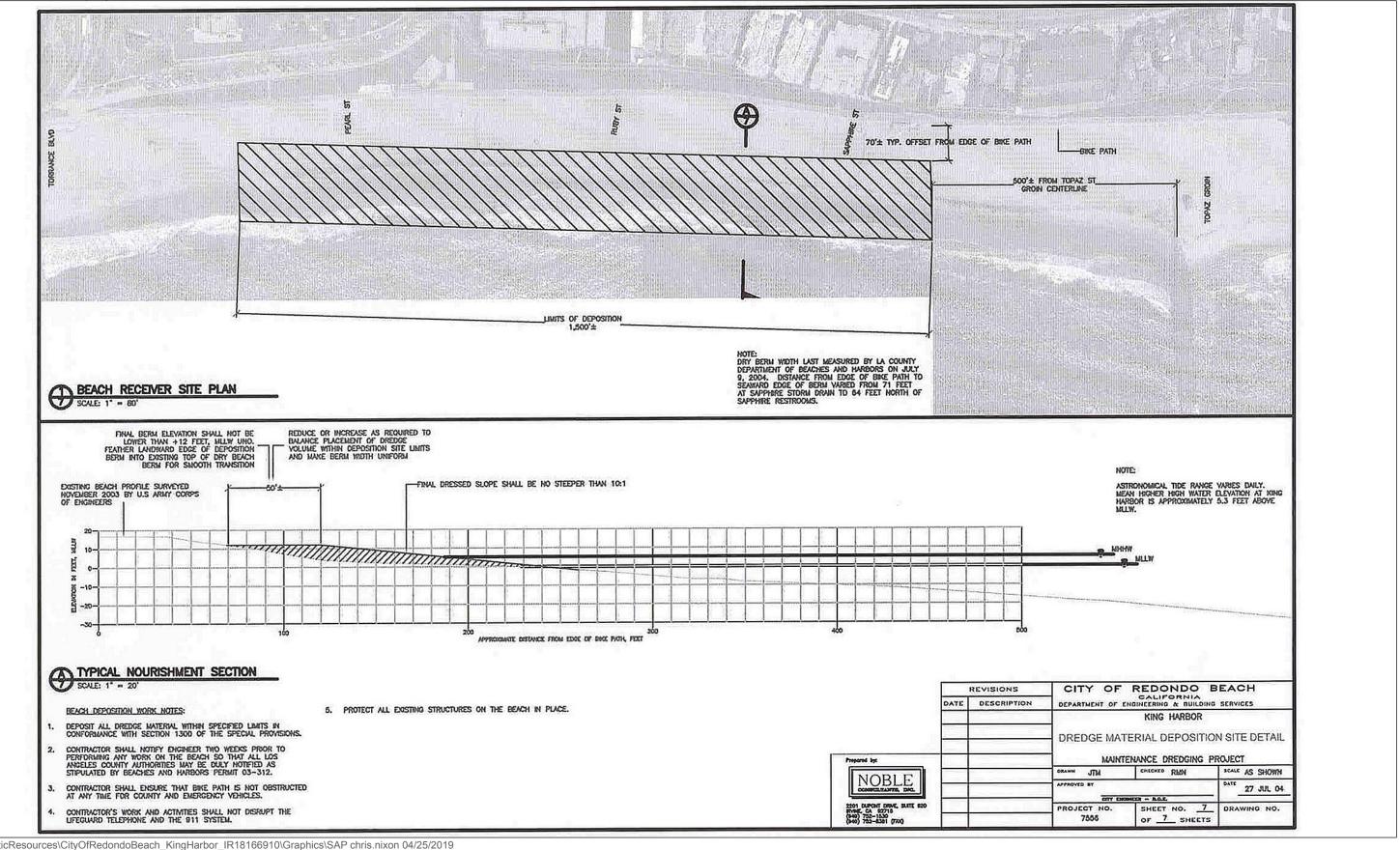
Parameter	Area I	Area II	Area III	ERL Threshold	ERM Threshold	Samples Exceeding Thresholds
Sand	89.8%	97.8%	87.4%	N/A	N/A	N/A
Silt/Clay	9.2%	2%	10.6%	N/A	N/A	N/A
Silver	<0.5 ppm	<0.5 ppm	<0.5 ppm	1 ppm	3.7 ppm	0% > ERL 0% > ERM
Arsenic	0.80 ppm	<0.5 ppm	1.24 ppm	8.2 ppm	70 ppm	0% > ERL 0% > ERM
Cadmium	<0.5 ppm	<0.5 ppm	<0.5 ppm	1.2 ppm	9.6 ppm	0% > ERL 0% > ERM
Chromium	13.4 ppm	4.27 ppm	8.04 ppm	81 ppm	370 ppm	0% > ERL 0% > ERM
Copper	11.4 ppm	6.43 ppm	6.19 ppm	34 ppm	270 ppm	0% > ERL 0% > ERM
Mercury	0.29 ppm	0.30 ppm	0.11 ppm	0.15 ppm	0.71 ppm	67% > ERL 0% > ERM
Nickel	6.76 ppm	1.77 ppm	3.99 ppm	21 ppm	51.6 ppm	0% > ERL 0% > ERM
Lead	14.2 ppm	4.48 ppm	5.26 ppm	47 ppm	218 ppm	0% > ERL 0% > ERM
Selenium	< 0.5 ppm	<0.5 ppm	0.27 ppm	Not Available	Not Available	N/A
Zinc	47.0 ppm	26.6 ppm	30.1 ppm	150 ppm	410 ppm	0% > ERL 0% > ERM
Total DDT	<1 ppb	<1 ppb	<1 ppb	1.58 ppb	46.1 ppb	0% > ERL 0% > ERM
Total PCB	<2 ppb	<2 ppb	<2 ppb	22.7 ppb	180 ppb	0% > ERL 0% > ERM
Total PAH	<330 ppb	< 330 ppb	< 330 ppb	4,022 ppb	44,792 ppb	0% > ERL 0% > ERM

Table 2-2. 2004 Sediment Characteristics – King Harbor

Notes: Table from Regional Board, 2004. % = percent; ppm = parts per million; ppb = parts per billion; > = greater than; < = less than; ERL = Effects Range-Low; ERM = Effects Range-Median; DDT = dichlorodiphenyltrichloroethane; N/A = not applicable; PCB = polychlorinated biphenyl congener; PAH = polycyclic aromatic hydrocarbon

SOURCE: Noble Consultants Inc., July 2004

Q:\3151_AquaticResources\CityOfRedondoBeach_KingHarbor_IR18166910\Graphics\SAP chris.nixon 04/25/2019



King Harbor Historical Dredging & Placement Sites (2004) King Harbor, Redondo Beach

Sourie Harson DR	
AS AND ACCESS TO ORIGINAL CITY OF REDONDO B CALIFORNIA DEPARTMENT OF ENGINEERING & BUILDING KING HARBOR MAINTENANCE DREDG AREAS 3 and 4 DREDGE SUPPLEMENTAL WORK DRAWN JTM CHECKED RMN APPROVED BY CITY ENGINEER - R.C.E. PROJECT NO. SHEET NO. 7556	services BING PROJECT PLAN

<u> гідике</u> **2-1а**

This page intentionally left blank.

Q:\3151_AquaticResources\CityOfRedondoBeach_KingHarbor_IR18166910\Graphics\SAP chris.nixon 04/25/2019

King Harbor Nearshore Beach Replinishment Site (2004) King Harbor, Redondo Beach

FIGURE **2-1b**

This page intentionally left blank.

The grain size of the sediments indicated they were compatible for beach nourishment, with a range of 87.4 percent to 97.8 percent sand. In addition, analytical results indicated the majority of metals and organic concentrations were below Effects Range-Low (ERL) guidelines developed by the National Oceanic and Atmospheric Administration (NOAA; [Buchman, 2008]). Mercury concentrations in Areas I and II did exceed the ERL but did not exceed the Effects Range-Median (ERM).

2.2 Outer Harbor Placement Site

Extensive offshore sand reserves exist along the Southern California Coast, including offshore of South Redondo Beach where the Outer Harbor Placement site is located (Noble et al., 2017). This area has been identified, evaluated, and approved as a borrow site by both the County and the USACE for beach nourishment at the Redondo Canyon Reach and the South Redondo Beach Reach (Figure 1-1b). The offshore (Outer Harbor) placement site is a stable placement location for sediments that was created during the last significant South Redondo Beach restoration project conducted in 1968 and 1969. At this time, 1.4 million cy of sand was dredged from the borrow site and placed on the South Redondo Beach Reach, widening the beach to approximately 250 feet (Noble, 2016a; Noble et al. 2017). This project is considered as one of the largest and most successful replenishment projects in Southern California to date. The current beach width ranges between 130 and 170 feet seasonally and is still considered to provide adequate shoreline protection for nearby infrastructure (Noble, 2016a).

Long-term studies of South Redondo Beach have verified the success of this project, as beach widths have remained relatively stable since placement occurred. Littoral current movements show that sediments placed on the beaches north of the Topaz Grain within the Redondo Canyon Reach are quickly eroded into the canyon; however, sediment placed on the South Redondo Beach Reach between Malaga Cove and the Topaz Groin are more stable (Figure 1-1b, Noble, 2016a). Sediment placement within the Redondo Canyon Reach north of the Topaz Groin was last performed in 2012 by Dutra Dredging Company. County and USACE studies of this area indicate that a beach width of approximately 60-70 feet is considered stable although the beach itself is classified as erosive as it has been observed that any additional sediment quickly sloughs into the Redondo Submarine Canyon. In 2012, approximately 76,000 cy of sediment were placed directly on the beach north of the Topaz Groin. No additional beach nourishment is proposed for this area at this time.

Since the 1968-1969 dredging event, there has been capacity at the Outer Harbor/borrow site for additional sediment placement. Sand was last placed at the borrow site from Marina del Rey in 2012. At this time, approximately 82,000 cy of sediment were placed at the borrow site (Redondo Disposal Summary Log – Marina del Rey dredging, 2012). Recent surveys show that the borrow site still has capacity for approximately 116,000 cy of sediment.

FINAL

FINAL Sampling and Analysis Plan Report Sediment Characterization Study In Support of Maintenance Dredging in King Harbor with Potential Outer or In-harbor Placement City of Redondo Beach Wood Project No. IR18166910 May 2020

This page intentionally left blank.

3.0 METHODS

Sampling and analysis procedures for this Study were designed to satisfy the testing requirements outlined in the Green Book (USACE/USEPA, 1991) and ITM (USEPA/USACE, 1998). This section describes the locations and techniques used to collect test sediments at 15 vibracore sampling locations and 10 grab sampling locations to prepare 7 composite samples at King Harbor.

3.1 Dredge Design

The maintenance dredging depth proposed for King Harbor is -18 feet MLLW for the Outer Harbor and -15 feet MLLW for Basin 3. In total, approximately 46,300 cy to the design depth and 62,000 cy to the 2-foot OD depths of -20 feet MLLW and -17 feet MLLW is proposed for removal from King Harbor (Table 3-1).

Dredging Site/Composite Area	Approximate Area (acres)	Design Depth (feet MLLW)	Estimated Dredge Volume to Design Depth (cy)	Estimated 2-ft OD Volume (cy) ¹	Estimated Total Volume (cy) ^{1,2}				
Outer Harbor	4.11	-18	45,500	14,500	60,000				
Basin 3	0.35	-15	800	1,200	2,000				
Total	4.46 - 46,300 15,700 62,000								
Placement Location		Estimated Placement Site Capacity (Volume, cy) ¹							
In-Harbor		29,000							
Outer-Harbor			116,000						

Table 3-1. Proposed Dredging Locations and Placement Sites Areas and Volumes

Notes:

¹ Volumes are conservative estimates and should be used for planning purposes only.

3.2 Sampling Design

Sediment collection followed the guidance provided in *Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual* (USEPA, 2001) and is detailed in the approved SAP (Wood, 2019). Sample collection was documented using vibracore logs, grab sample logs, and photography. Complete vibracore and grab sample logs are in Appendix B and sample photographs are in Appendix C.

3.2.1 Sample Collection Locations and Depths

To adequately characterize the proposed dredge footprints, 15 vibracore samples and 10 grab samples were collected. Those samples were then subsampled and combined to form 7 composites for analytical chemistry and geotechnical parameters. Each core was also sub-sectioned into layers for grain size analyses, as required by the USEPA guidance documents. The layers include: 0-2 feet (upper [U]), 2 feet to project design depth (middle [M]), and project design depth to the potential OD depth (lower [L]).

Vibracore and grab samples were collected at King Harbor between October 14 and October 17, 2019 (Table 3-2a and Table 3-2b). Coring locations were positioned as close to the proposed sites as possible, only relocating to avoid rip-rap, rocks, or dangerous sampling conditions

(Table 3-2c). The actual sample collection locations in the King Harbor footprints are plotted on Figures 3-1a, 3-1b, 3-2a, and 3-2b.

Navigation to the proposed sample collection locations was performed primarily using a Differential Global Positioning System (DGPS) with real-time monitoring of the most recent shape files aboard the vessel *M/V Leviathan*. This device has a global positioning accuracy of approximately plus or minus 3 meters (m). The position of the *M/V Leviathan* was adjusted on a fine scale until the coordinates in Table 3-2a were reached. The vessel was secured over the collection location using the bow anchor and at least one stern line. Once a location was secured and confirmed, the actual location coordinates and water depth (measured with a weighted fiberglass tape) were recorded in the Study field log (Table 3-2a and 3-2b). The water depth was corrected to MLLW using NOAA tide tables and compared with the bathymetric data provided by the Navy to verify proper sampling locations.

3.2.2 Vibracore Collection

All collection locations were sampled as described in the SAP (Wood, 2019). Six Scientific Service technicians deployed a vibracore to collect sediment samples. The vibracore used a 4-inchdiameter aluminum tube connected to a stainless-steel cutter. The aluminum-encased vibrating unit used 240-volt, 3-phase, 26-ampere electricity to drive two counter-rotating concentric vibrators. The vibracore and tube were lowered by a hydraulic winch and vibrated until penetration to either Project depth or maximum allowable depth (refusal) was achieved. Core penetration depth was determined using a tape measure attached to the vibracore head. After the vibracore was turned off, the sediment core was returned to the boat's deck for processing. Once onboard, core samples were carefully extruded into clean, polyethylene-lined trays, photographed, and inspected for unique strata, color, odors, and other notable characteristics. This information was recorded on field data sheets prior to subsampling for chemical and physical analyses. Grab Field Data Logs are in Appendix B and grab photograph logs are in Appendix C.

3.2.3 Van Veen Grab Sample Collection

Surface sediments were collected using a stainless-steel, 0.1-square-meter (m²) Van Veen grab sampler (grab sampler). Prior to deployment, the grab sampler was cocked with the trigger held in place by tension supplied from the weight of the grab sampler. The grab sampler was lowered approximately 2 meters per second (m/sec) until it was approximately 5 meters above the bottom, at 5 meters descent was slowed to 1 m/sec to minimize the effects of bow wave disturbance of the surface sediment. As bottom contact was made (indicated by slack in the wire), tension on the wire was loosened, releasing the trigger. The tension on the wire was then slowly increased, causing the lever arms to close the grab, and the grab sampler was reeled into the boat. Once the grab sampler was back on board, the top doors were opened for inspection. Overlying water was decanted or siphoned off to evaluate sample acceptability.

Once the grab sampler had been retrieved and the grab samples were considered acceptable, they were photographed and characterized by general descriptions of their color, odor, composition, etc. This information was recorded on field data sheets prior to subsampling for

chemical and physical analyses. Grab Field Data Logs are in Appendix B and grab photograph logs are in Appendix C.

A specially designed stainless-steel scoop was used to collect sediments from a depth of 0 to 5 centimeters (cm) inside the sampler, taking care not to collect sediment in contact with the inside surfaces. The surface sediment retained from each grab was then placed in a pre-cleaned stainless-steel bowl and thoroughly homogenized with a stainless-steel spoon, then distributed into pre-labeled sample containers.

3.2.3.1 Vibracore Sample Nomenclature

Vibracore sediment sample names used the following identification scheme consisting of 5 alphanumeric characters:

LL-C#-D

Where:

- The first characters "LL" identify the sample's location either OH for "Outer Harbor," or B3 for "Basin 3."
- The next character (C) indicates that the sample is a core sample.
- The character "#" indicates the collection location of the sample (1 through 12 for OH and 1 through 3 for B3).
- The next character (D) indicates the relative depth interval of the sample:
 - U (Upper) 0 to 2 feet below the sediment-water interface (SWI)
 - M (Middle) 2 feet below the SWI to the proposed design depth for each area
 - L (Lower) the OD depth or sediment collected from the proposed design depth for each area to 2-feet below that depth.

For example, following the identification scheme, OH-C1-M indicates the sample collected at the Outer Harbor, core sample 1, from the middle of the core (from 2 feet below the SWI to the proposed design depth for that area).

3.2.3.2 Grab Sample Nomenclature

Grab sediment sample names used the following identification scheme consisting of 4 alphanumeric characters:

Where:

- The first characters "LL" identify the samples location OH for "Outer Harbor" or IH for "In-Harbor."
- The next character (G) identifies that the sample is a grab sample.
- The character "#" identifies the collection location of the sample (1 through 5 for OH and IH).

For example, following the identification scheme, IH-G5 indicates the sample collected In-Harbor at grab location number 5.

3.2.4 Composite Areas

Sample collection and analysis was divided into the following areas that were composited and analyzed for the following sample frequencies:

- Proposed Dredge Areas (Figure 3-1a and b, Table 3-2a)
 - <u>Outer Harbor (OH; 46,000 cy to design depth)</u>³ Twelve (12) sampling locations with four (4) composite chemistry & geotechnical samples and thirty-three (33) grain size samples.
 - <u>Basin 3 (B3; 750 cy to design depth)</u>³ Three (3) sampling locations with one (1) composite chemistry and geotechnical sample and nine (9) grain size samples.
- Placement sites (Figures 3-2a and b, Table 3-2b)
 - <u>In-Harbor Placement (IH)</u>: Five (5) grab samples collected within each area and tested individually for geotechnical parameters and composited for analytical chemistry.
 - <u>Outer Harbor Placement (OH)</u>: Five (5) grabs tested individually for geotechnical parameters and composited for analytical chemistry.

Each vibracore composite was comprised of sediment from three cores that were grouped based on their location in the Project footprint. Each core was subsampled into similarly sized aliquots and homogenized for analysis. The vibracore composites were comprised of the following samples:

- OH-A-Composite Cores OH-C1, OH-C2, and OH-C3
- OH-B-Composite Cores OH-C4, OH-C5, and OH-C6
- OH-C-Composite Cores OH-C7, OH-C8, and OH-C9
- OH-D-Composite Cores OH-C10, OH-C11, and OH-C12, and
- B3-Composite Cores B3-C1, B3-C2, and B3-C3.

³ Value does not include overdredge volume.

Grab composites were similarly created by combining representative aliquots of each individual grab sample to make a composite.

- OH-G-Composite Grabs OH-G1 through OH-G5
- IH-G-Composite Grabs IH-G1 through IH-G5

3.2.5 Deviations from SAP

There were several deviations from the Survey SAP for this study. Deviations included:

- The proposed subcontractor was not used due to a scheduling conflict. Instead of Aquatic Blue Environmental (Aquatic Blue), SixSci and Leviathan Environmental were used to operate the marine sampling vessel, collect samples and operate vibracore and grab sampling equipment.
- Adjustments to sampling locations to safely maneuver around visible and submerged obstructions were made by the Field Manager. A new location was picked within the sampling footprint using caution and discretion (Table 3-2c).
- Total petroleum hydrocarbons (TPH) was not measured and analyzed due to review of historical data that revealed TPH was not sampled historically.
- Total Recoverable Petroleum Hydrocarbons (TRPH) was measured as USEPA HEM:SGT Oil and Grease SGT 1664 instead of 418.1M due to phase out of freon;
- Of the 36 samples proposed for grain size analysis, 33 were tested. This was because 3 samples (OH-C5-L, OH-C6-L, and OH-C7-L) did not meet the OD depth at the proposed sampling locations.
- Testing for Atterberg limits (the moisture content of the sediment) was not performed. According to the lab, the samples were determined to be non-plastic and therefore unsuitable to test for Atterberg limits. "Non-plastic" refers to the plastic limit of the Atterberg limit and is defined as the amount of water moisture present in the soil. The plastic state of the soil is reached when a thread of soil with 3.2 millimeters (mm) diameter begins to crumble.

3.2.6 Equipment Decontamination

Once the core sleeve was extracted from the vibracore tube/barrel, any remnant sediment on the equipment was removed with site water and scrubbed with a clean brush and Alconox-water solution. The core barrel or Van Veen grab sampler was then re-rinsed with site water prior to moving to the next sampling location. Additionally, all sediment sampling tools, including stainless-steel mixing vessels and scoops, core extraction trays, and other reusable items that came in contact with the sample were similarly decontaminated prior to reuse.

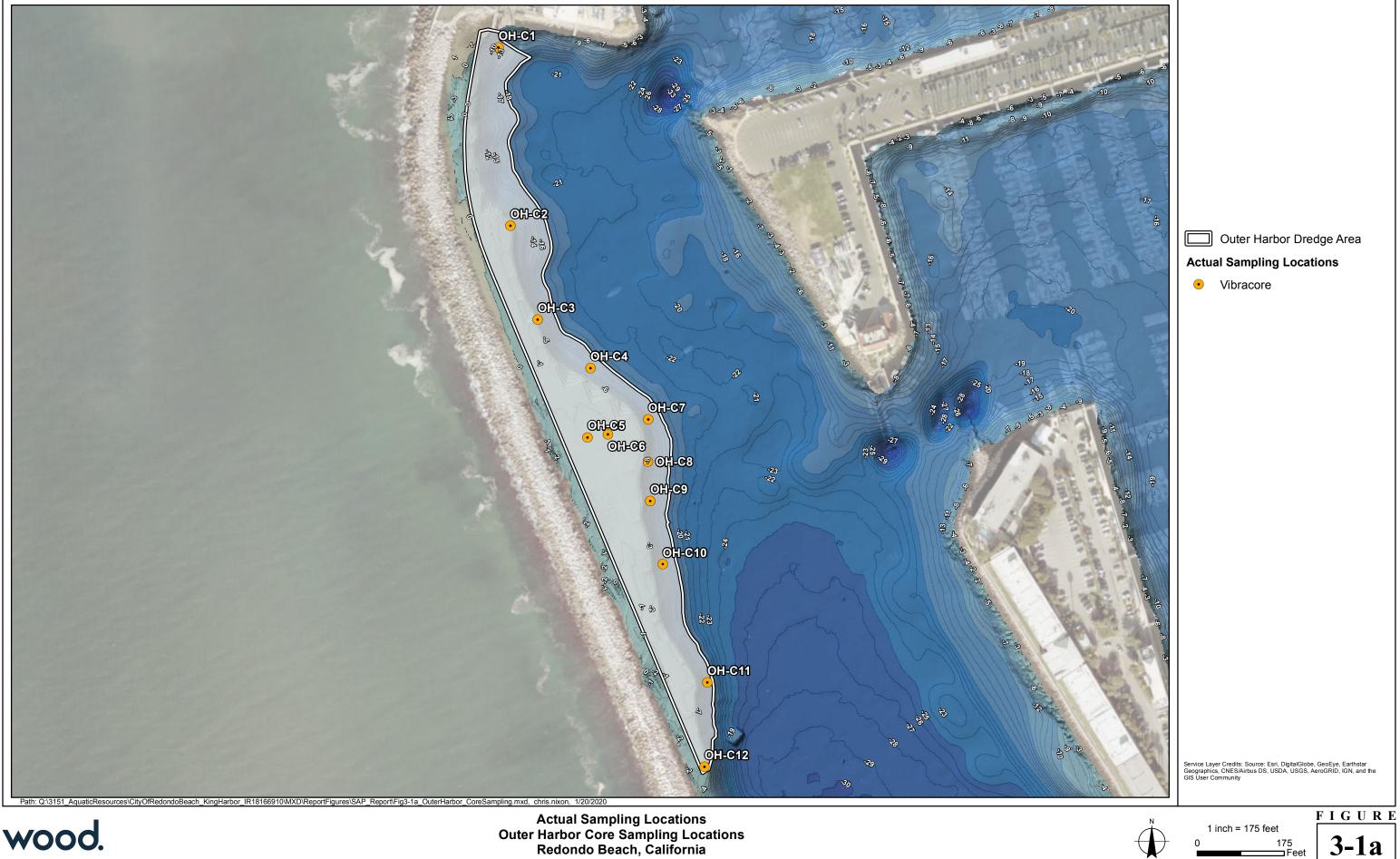
3.2.7 Sediment Archiving

The Wood Field Manager retained archived subsamples from each of the vibracore upper and lower samples, the vibracore composite samples, and each of the Van Veen grab samples used for analytical chemistry testing. Archived samples will be retained at the Wood San Diego office in a locked freezer at -20 °C for at least one year after their collection (until October 17, 2020).

3.3 Sample Collection Documentation, Handling, and Delivery

Sample documentation followed the procedures in the SAP (Wood 2019). The integrity of each sample from the time of collection to the time of data reporting was maintained throughout the Study by recording accurate core logs, filling out chain-of-custody forms at the time of sample collection, and photographically documenting each core and collection attempt. All samples were maintained at 4°C throughout transport as noted on the sample check-in sheet provided by the analytical laboratory.

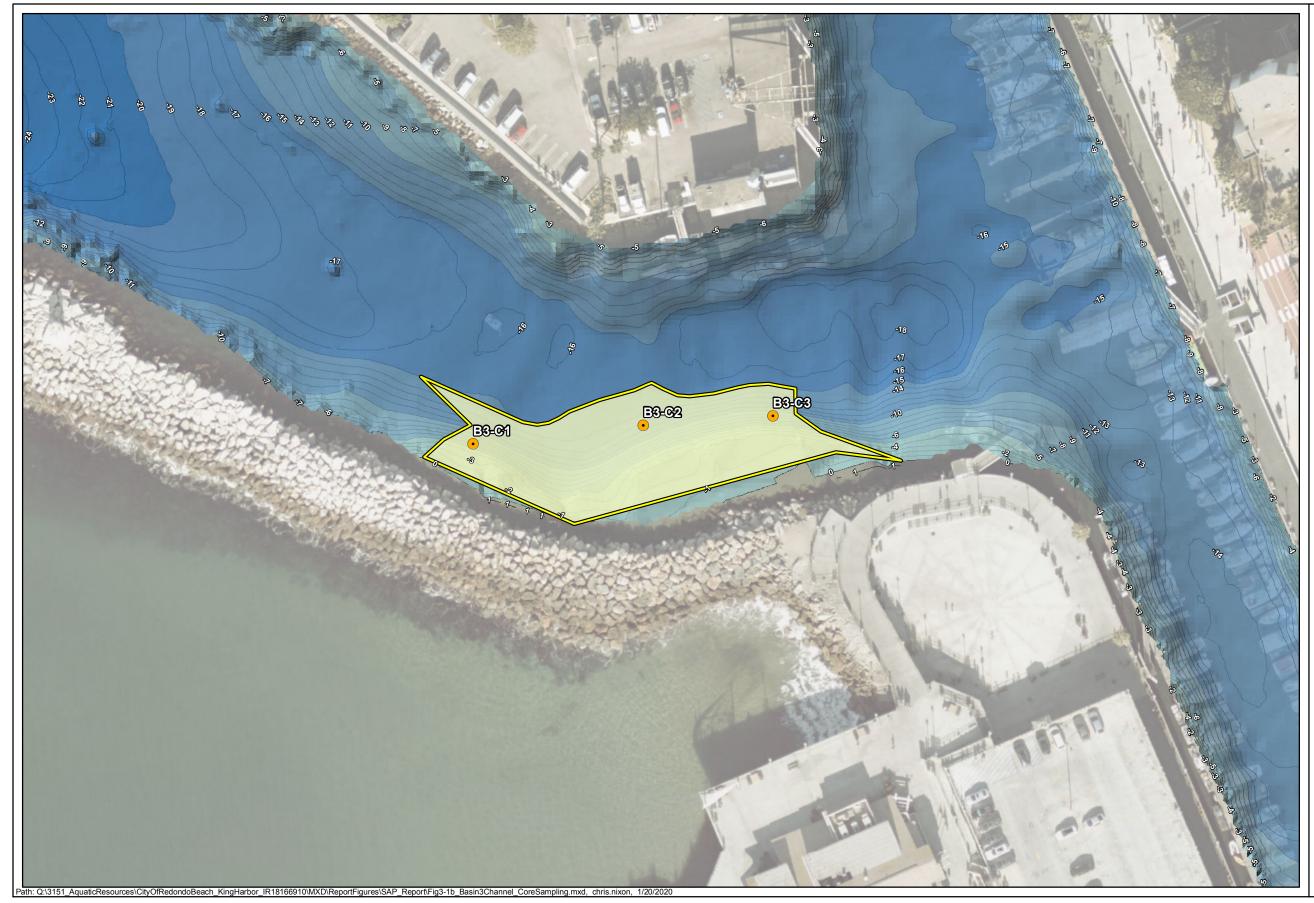
Sediment samples for both cores and grabs were couriered to the Eurofins Calscience analytical laboratory. Individual core samples for each composite area were composited in the field by Wood scientists, and subsamples from each composite were sent to Eurofins Calscience via courier in labeled 16-ounce glass jars, quart size plastic bags, and one-gallon plastic bags.


3.4 Physical and Chemical Analysis

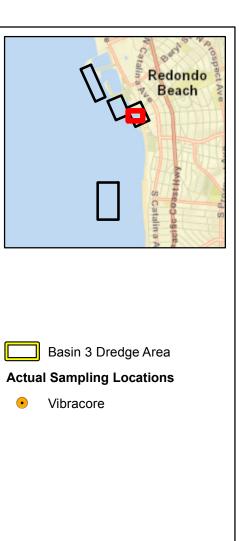
The chemical and physical testing methods used for the Project are of sufficient sensitivity to meet the objectives of the testing protocols and ensure that any adverse impacts to the water column or the benthic environment are identified.

Sample testing results collected during the sediment investigation were compared to appropriate sediment quality guidelines such as Effects Range-Low (ERL) and Effects Range-Median (ERM, [Buchman 2008]). Eurofins Calscience conducted all physical and chemical analyses on sediment samples according to regulatory-approved methods for the constituents listed in Table 3-3.

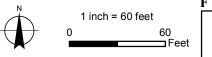
3.4.1 Physical Analyses


Grain-size analysis was performed on each of the 12 individual vibracore upper, middle, and lower samples; with the exception of OH-C5-L, OH-C6-L, and OH-C7-L; and the 10 grab samples. The grain-size analyses were performed using method ASTM D4464(M) and ASTM D4318. Percent gravel, sand, silt, and clay were reported to 0.1 percent, along with the corresponding millimeter and phi sizes, and a cumulative grain-size distribution diagram.

wood.

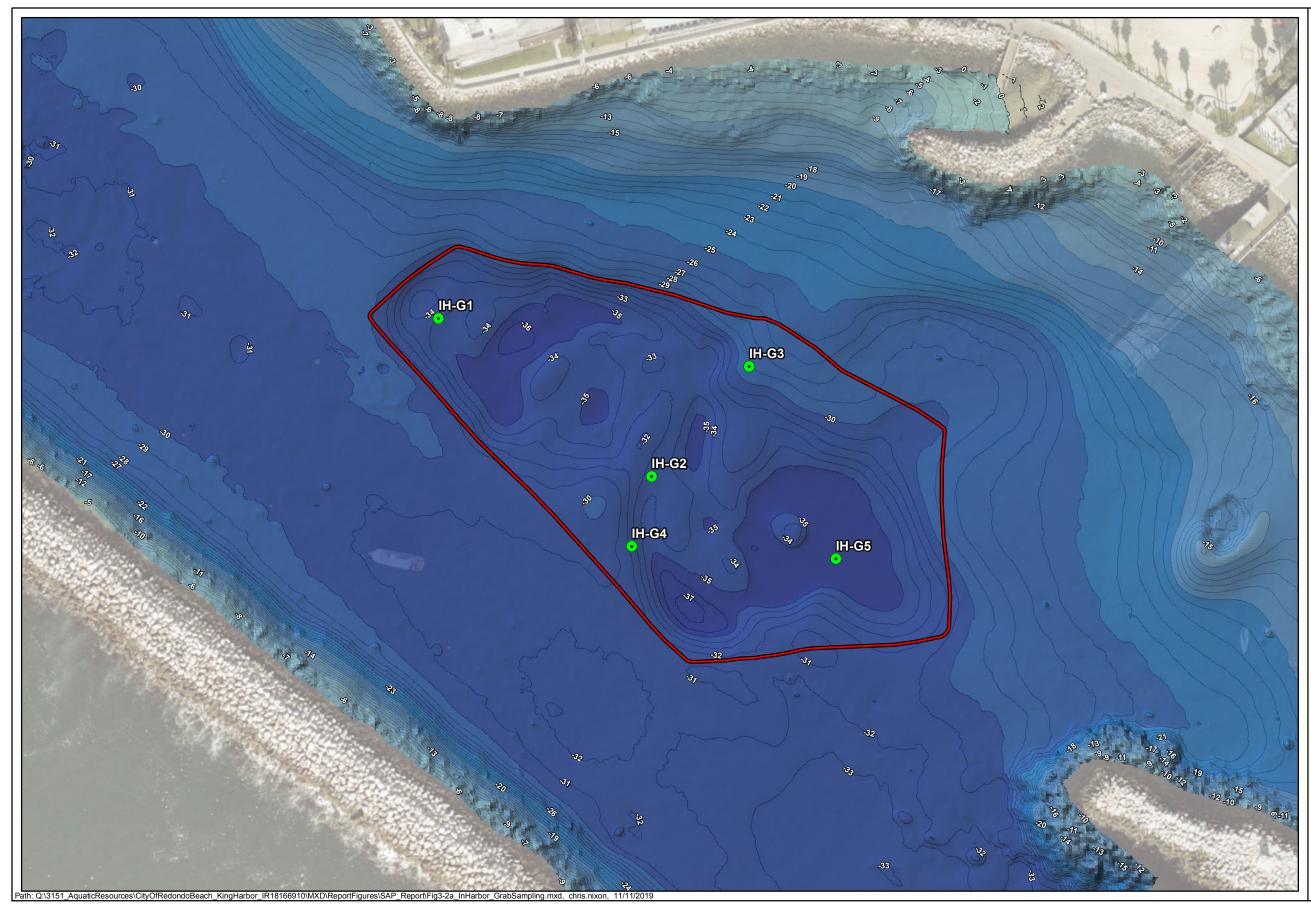

Actual Sampling Locations Outer Harbor Core Sampling Locations Redondo Beach, California

This page intentionally left blank



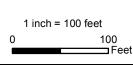
wood.

Actual Sampling Locations - Basin 3 Channel Basin 3 Core Sampling Locations Redondo Beach, California



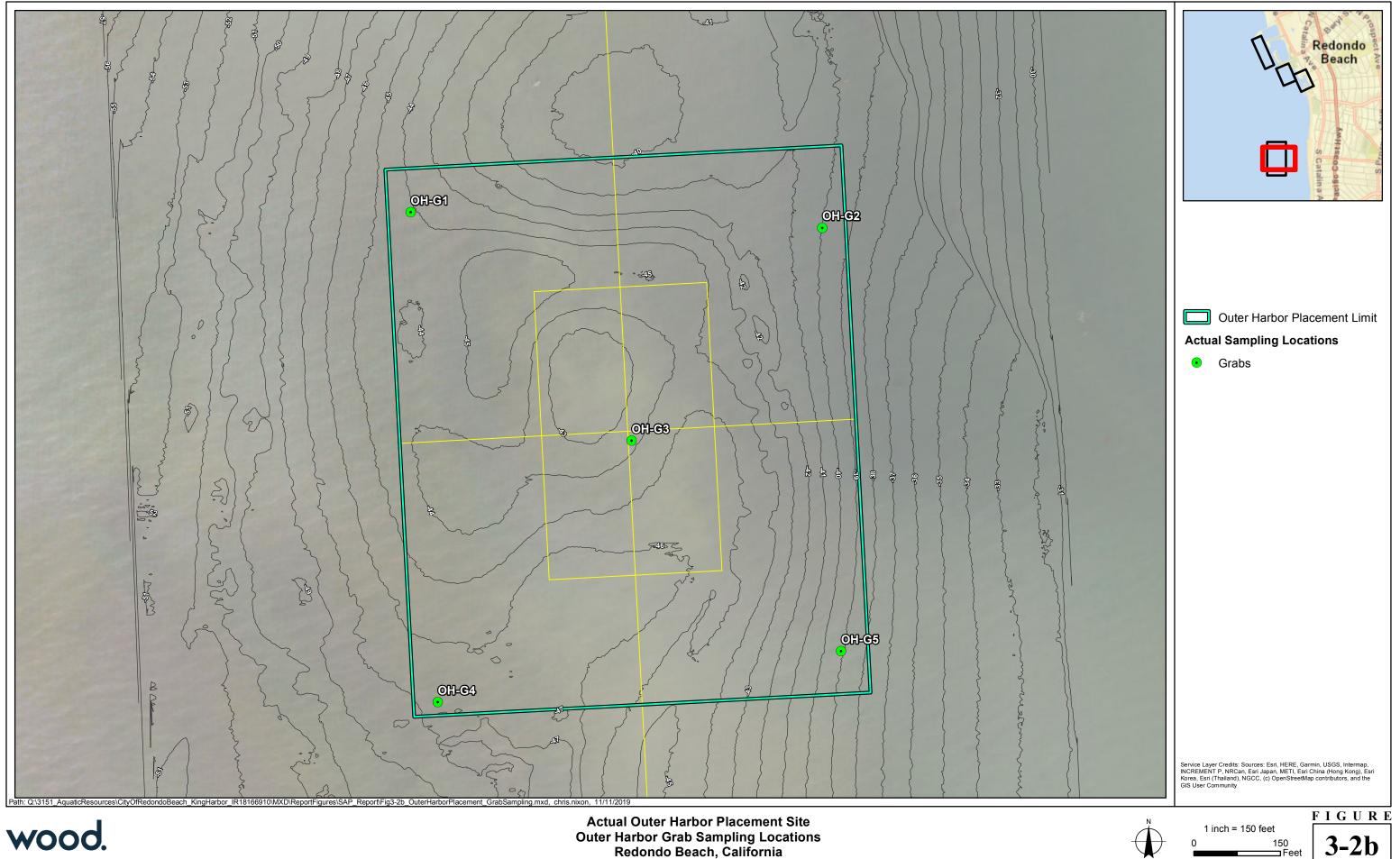
Service Layer Credits: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User Community

This page intentionally left blank


Actual Nearshore Placement Site In-Harbor Placement Grab Sampling Locations Redondo Beach, California

• Grabs

Service Layer Credits: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User Community



FIGURE

This page intentionally left blank

This page intentionally left blank

Sample ID	Latitude (ddºmm.mmm)	Longitude (dddºmm.mmmm)	Date	Time	Project Depth	Mudline Elevation (ft MLLW)	Target Penetration (feet)	Actual Penetration (feet)	Recovered Core Length (feet)	
OH-C1	33°50.930	-118°24.077	10/14/2019	10:25	-20 to OD	-10.8	9.2	4.1	4.1	Sampling location obstruc Eventually slid to 4.2' refus core barrel for attempt 1, s
OH-C2	33°50.871	-118°24.072	10/14/2019	12:00	-20 to OD	-5.8	14.2	8.4	8.1	Shifting sampling location plug. Shell hash from 2.0
OH-C3	33°50.840	-118°24.061	10/14/2019	13:00	-20 to OD	-10.4	9.6	9.6	9.6	Sand plug. No refusal.
OH-C4	33°50.824	-118°24.040	10/16/2019	10:40	-20 to OD	-13.6	6.4	6.3	6.3	Sample location moved at
OH-C5	33°50.801	-118°24.041	10/15/2019	09:00	-20 to OD	-1.6	18.4	6.5	6.5	Moved sample about 15' e sample, refusal at 6.5'. Sa
OH-C6	33°50.802	-118°24.033	10/15/2019	10:45	-20 to OD	-1.6	18.4	5.0	5.0	Moved sample about 15' e Sand plug. Refusal at 5'.
OH-C7	33°50.807	-118°24.017	10/15/2019	12:15	-20 to OD	-11.4	8.6	4.6	3.5	Moved sample 15' east du collect.
OH-C8	33°50.793	-118°24.017	10/16/2019	11:45	-20 to OD	-9.7	10.3	6.0	6.0	Site too shallow to sample Note: Current velocity/surg Terrestrial organic debris i and 3.
ОН-С9	33°50.780	-118°24.016	10/16/2019	13:45	-20 to OD	-11.4	8.6	3.0	3.0	Refusal at 3', attempted co bouncing on top of terrestr and 3.
OH-C10	33°50.759	-118°24.011	10/14/2019	16:50	-20 to OD	-12.5	7.5	7.5	7.5	Recovered 7.1, lost about
OH-C11	33°50.720	-118°23.993	10/14/2019	15:50	-20 to OD	-11.8	8.2	8.2	8.2	Sand plug.
OH-C12	33°50.692	-118°23.994	10/14/2019	15:10	-20 to OD	-13.2	6.8	6.8	6.8	Sand plug.
B3-C1	33°50.490	-118°23.567	10/17/2019	09:00	-17 to OD	-8.6	8.4	4.4	4.4	Refusal, moved location a Refusal felt like sand ham for next attempt.
B3-C2	33°50.492	-118°23.546	10/17/2019	12:40	-17 to OD	-12.1	4.9	5.0	4.6	Sample collected at propo
B3-C3	33°50.493	-118°23.530	10/17/2019	13:20	-17 to OD	-8.3	8.7	8.7	7.7	Sample moved away from be slightly compacted, but

Table 3-2a.Vibracore Field Log Summary Table

FINAL

Additional Notes

ructed by vessel, moved 10' east. Sample still in footprint. Felt hard at 1'. efusal. Hard refusal. Small gravelly plug. Strong odor on extraction. Lined I, sample collected for core composite from 0 to 4'.

on 10' east due to visible submerged riprap (still in project footprint). No .0' to 4.0'. Refusal at 8.1'.

about 10'. Small sandy plug with piece of surf grass.

5' east due to submerged riprap and inadequate water depth to collect Sandy plug with shell hash.

5' east due to submerged riprap and inadequate water depth to collect.

due to submerged riprap, refusal at 4.6' and inadequate water depth to

ple safely, moving vessel about 10' west. urge prohibit sampling with a drill rig. Sediment felt soft and spongy at 5'. is in core (material of detritus; sticks, leaves). Composited with attempt #2

I collection for about 5 minutes before abandoning for next attempt, barrel estrial organic debris material of sticks and leaves, composite attempt #2

out 0.5' water washout.

about 5' out because proximity to riprap too precarious to 3 point anchor. ammer effect penetration to 3' relatively smooth. Changing vibracore head

posed location. Small sand plug. 1:1 recovery. Over penetrated. om riprap/needed to avoid shoal buoy with anchor. Small plug. Core may but more likely 0.5' lost at surface during extraction (in water).

Sample ID	Latitude (dd.mmmmm)	Longitude (ddd.mmmmm)	Date	Time	Water Depth (feet)	Tide (feet)	Mean Lower Low Water (feet)	Grab fail code	Penetration (cm)	Composition	Odor	Color	Shell hash (N/L/M/H)	Infauna (Y/N)	Sed Chem (Y/N)	Grain size (Y/N)	Sed Tox (Y/N)	Debris (Y/N)	Additional Notes	Station Comments
OH-G1	33°49.772	-118°23.871	10/16/2019	0830	49.6	4.4	-45.2	S1	3.5	Sand	None	2.5Y 3/2 (v. dark grayish brown)	Ν	N	Y	Y	N	N	Surf grass at surface. Very homogenous	Sizeable swell
OH-G2	33°49.768	-118°23.730	10/16/2019	0850	45.8	4.6	-41.2	S1	3	Sand	None	2.5Y 3/2 (v. dark grayish brown)	М	N	Y	Y	N	N		
OH-G3	33°49.707	-118°23.795	10/16/2019	0905	48.7	4.8	-43.9	S1	3	Sand	None	2.5Y 4/2 (Dark grayish brown)	Ν	N	Y	Y	N	N	Worm burrows at surface. Very homogenous	
OH-G4	33°49.632	-118°23.861	10/16/2019	0920	51.5	4.9	-46.6	S1	3	Sand	None	2.5Y 3/2 (v. dark grayish brown)	М	N	Y	Y	N	N	Homogenous; some shell hash at surface	
OH-G5	33°49.647	-118°23.723	10/16/2019	0930	39.2	5	-34.2	S1	6	Sand	None	2.5Y 5/3 (light olive brown)	Μ	N	Y	Y	N	N	Homogenous; lighter color than other locations; Very clean. Biota on surface (sea biscuit? Urchin?)	
IH-G1	33°50.594	-118°23.789	10/15/2019	1500	35.9	1.23	-34.7	S1	12	Silty sand	None	2.5Y 3/1 (v. dark gray)	Ν	N	Y	Y	N	N	Intact surface, arthropod swimming in water	
IH-G2	33°50.567	-118°23.745	10/15/2019	1520	33.5	1.22	-32.3	S1	8	Silt	None	2.5Y 3/2 (v. dark grayish brown)	L	N	Y	Y	N	N	Creatures swimming in the water	
IH-G3	33°50.586	-118°23.725	10/15/2019	1540	30.8	0.99	-29.8	S1	7.5	Sandy silt	None	2.5Y 3/2 (v. dark grayish brown)	N	N	Y	Y	N	N	Door jammed on half of grab; worm	
IH-G4	33°50.555	-118°23.749	10/15/2019	1630	35.5	0.55	-35.0	S1	8	Sandy silt	None	2.5Y 3/2 (v. dark grayish brown)	Ν	N	Y	Y	N	N	Red algae on surface	
IH-G5	33°50.553	-118°23.707	10/15/2019	1730	36.7	0.51	-36.2	S1	7	Sandy silt	None	2.5Y 3/2 (v. dark grayish brown)	Ν	N	Y	Y	N	N	Live mussels on surface; 1cm thick layer	

Table 3-2b. Grab Sample Field Log Summary Table

FINAL

Sample ID	Reason for relocating
OH-C1	Proposed sampling location obstructed by vessel, moved 10' east.
OH-C2	Shifted sampling location 10' east due to visible submerged riprap.
OH-C4	Sample location relocated approximately 10'.
OH-C5	Sample relocated approximately 15' east due to submerged riprap and inadequate water depth to collect sample.
OH-C6	Sample relocated about 15' east due to submerged riprap and inadequate water depth to collect.
OH-C7	Sample relocated 15' east due to submerged riprap.
OH-C8	Site too shallow to sample safely, moved sampling location approximately 10' west.
B3-C1	Sample location moved approximately 5' out because proximity to riprap too precarious to 3 point anchor.
B3-C3	Sample relocated to avoid shoal buoy with anchor.

	Table 3-2c.	Sample L	ocation Ad	justments
--	-------------	----------	------------	-----------

3.4.2 Chemical Analyses

Eurofins Calscience analyzed all sediment samples according to USEPA and USACE approved methods for the constituents listed in Table 3-3. The analyte list for the investigation included metals, polycyclic aromatic hydrocarbons (PAHs), phenols, and polychlorinated biphenyl congeners (PCBs). These chemicals were chosen because they are chemicals that are common wood treatment chemicals (i.e. sometimes used on pilings).

Analyte ⁱ	Analysis Method	Sediment Target Reporting Limit ^{a, b}
Grain Size	ASTM D4464 (M)	0.1 %
Sieve and Hydrometer	ASTM D422	0.1 %
Atterberg Limits	ASTM D4318	N/A
Total Solids	SM 2540 B	0.1 %
рН	USEPA 9045C	0.010 pH Units
Total Organic Carbon	USEPA 9060A	0.1 %
Total Ammonia	SM 4500-NH3 B/C (M) °	0.2 mg/kg
Total Sulfides	USEPA 376.2M °	0.5 mg/kg
Soluble Sulfides	USEPA 376.2M °	0.5 mg/kg
Oil & Grease	USEPA 418.1	10 mg/kg
Metals (Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Selenium, Silver, Zinc)	USEPA 6020 d	0.1 mg/kg
Mercury	USEPA 7471A d	0.02 mg/kg
Total Recoverable Petroleum Hydrocarbons (TRPH)	USEPA HEM SGT: O&Gd	10 mg/kg
Polycyclic Aromatic Hydrocarbons (PAHs) e	USEPA 8270C SIM d	10 µg/kg
Volatile Solids	USEPA 160.4	0.10 %
Organochlorine Pesticides ^f	USEPA 8081A d	1.0–20 µg/kg ^j
Polychlorinated Biphenyl (PCB) Congeners g	USEPA 8270C SIM d	0.2-0.4 µg/kg
Phenols	USEPA 8270C SIM d	10–500 µg/kg
Pyrethroids	GC/MS i	0.5–1.0 µg/kg
Phthalates	USEPA 8270C SIM d	50 µg/kg
Organotins	Krone, et al. ^h	3.0 µg/kg

Table 3-3. Analyses Methods of Sediment Samples

Notes:

^a Sediment minimum detection limits are on a dry-weight basis.

^b Reporting limits are provided by Eurofins Calscience Environmental Laboratories, Inc.

[°] Standard Methods for the Examination of Water and Wastewater, 19th Edition, American Public Health Association et al., 1995.

^d USEPA, 1986–2007 SW-846. Test Methods for Evaluating Solid Waste, *Physical/Chemical Methods*, 3rd Edition.

- Includes 1-methylnapthalene, 1-methylphenanthrene, 1,6,7-trimethylnapthalene, 2-methylnapthalene, 2,6-dimethylnapthalene, acenapthylene, anthracene, naphthalene, phenanthrene, fluorene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluroanthene, benzo(g,h,i)perylene, benzo(k)fluroanthene, dibenz(a,h)anthracene, chrysene, fluoranthene, indeno(1,2,3-c,d)pyrene, isophorone, pyrene, dibenzothiophene, benzo(e)pyrene, perthane, perylene, pyrene, and biphenyl
- ^f Includes aldrin, α- benzene hexachloride (BHC), β-BHC (lindane), Δ=BHC, ¥-BHC, α-chlordane, ¥--chlordane, chlordane, dieldrin, cis-nonachlor, trans-nonachlor, DCPA (Dacthal), endosulfan I, endosulfan II, endosulfan sulfate, endrin, endrin aldehyde, endrin ketone, heptachlor, heptachlor epoxide, methoxychlor, Mirex, toxaphene, oxychlordane, perthane, 2,4- and 4,4-dichlorodiphenyldichloroethane (DDD), 2,4- and 4,4-dichlorodiphenyldichloroethylene (DDE), and 2,4- and 4,4-dichlorodiphenyltrichloroethane (DDT)
- ⁹ Polychlorinated biphenyls (PCBs) (sum of 42 congeners: 18, 28, 37, 44, 49, 52, 66, 70, 74, 77, 81, 87, 99, 101, 105, 110, 114, 118, 119, 123, 126, 128, 132/153, 138/158, 149, 151, 156, 157, 167, 168, 169, 170, 177, 180, 183, 187, 189, 194, 201, and 206)
- ^h Krone, C.A., D.W. Brown, D.G. Burrows, R.G. Bogar, S.L. Chan, and U. Varanasi, 1989. A Method for Analysis of Butyltin Species and Measurement of Butyltins in Sediment and English Sole Liver from Puget Sound. *Marine Environmental Research* 27: 1–18.
- ⁱ Includes: allethrin (bioallethrin), bifenthrin, cyfluthrin-beta (baythroid), cypermethrin, deltamethrin/tralomethrin, phenothrin, fenpropathrin (danitol), fenvalerate (sanmarton)/esfenvalerate, fluvalinate, permethrin (cis/trans [C13]), phenothrin (sumithrin), resmethrin/bioresmethrin, tetramethrin, and lambda-cyhalothrin
- ^j Except toxaphene, which is 1,000 micrograms per kilogram (parts per billion)

% = percent; µg/kg = micrograms per kilogram (parts per billion); ASTM = ASTM International; C6-C44 = carbon chain; GC = gas chromatography; (M) = modified; mg/kg = milligrams per kilogram; MS = mass spectrometry; N/A = not applicable; SIM = selective ion monitoring; SM = Standard Method; USEPA = United States Environmental Protection Agency

4.0 RESULTS

Sediments from the Project footprint were evaluated for suitability for nearshore placement, regulated under Section 404 of the Clean Water Act (CWA), or nearshore replenishment chosen by the City in consultation with the SC-DMMT. The placement location for the Project will be selected based on the results of this Study.

Analytical testing results for this study were evaluated to determine the potential of chemical contaminants in the sediment to cause adverse effects during dredging or placement. Sediment grain size results are summarized in Table 4-1a. Sediment chemistry results reported in dry weight are summarized in Table 4-1b. Full analytical laboratory reports for grain size and chemical analyses are included in the Eurofins Calscience reports in Appendix D.

4.1 Physical Analysis

Grain size analysis was performed on individual cores and composite samples. Mean grain size and the percent of sediment in each grain size classification (i.e. clay, silt, sand, and gravel) for all samples are detailed in Table 4-1a.

4.1.1 Dredging Areas

The individual cores were sampled from the upper, middle, and lower sections. All dredging area individual core samples were classified as sand, primarily either medium or fine-grained sand, and contained 80 percent or more (\geq) sand, except for two samples, OH-C11 (47.8 percent) and B3-C1-M (75.3 percent). However, each of the individual core strata samples collected from sample OH-C11 (top, middle, and bottom), and the top, bottom, and the full core sample for location B3-C1 also contained \geq 80 percent sand. Out of the five core composite samples, OH-A-Composite and B3-Composite were classified as medium sand and the remaining three composites; OH-B-Composite, OH-C-Composite, and OH-D-Composite were classified as fine sand. All composite samples contained \geq 80 percent sand and are appropriate for nearshore placement.

4.1.2 Placement Areas

The individual grab samples were similar in composition to the core samples, with all samples classified as sand. Of the 10 samples, only OH-G1 was classified as fine-grained sand. Samples OH-G2 and OH-G5 were classified as coarse sand, OH-G3 and OH-G4 were classified as medium grained sand, and the remaining five grab samples were classified as very fine sand. The OH-G-Composite was also classified as coarse sand. Notably, individual grab samples collected at the IH placement sites were all classified as very fine sand and contained <80 percent sand (47.5 to 66.7 percent sand). The IH-G-Composite was also classified as very fine sand.

4.2 Sediment Chemistry Results

Sediment chemistry analysis was conducted on seven composite samples: five core samples and two grab samples (Table 3-3). Analytical chemistry data for all samples are provided in Table 4-1b.

4.2.1 Dredging Areas

Overall, the results of the analytical chemistry analyses indicated very low levels of analytes detected in all Project test sediments. The only exceptions were slight exceedances of ERL guideline values for 4,4'-DDE and total DDTs in all composite samples; slight exceedances of ERL guideline values of total PCB congeners for samples OH-C-Composite and OH-D-Composite; exceedances of the ERL guideline value for chlordane in the OH-A-Composite and OH-B-Composite; and slight exceedances of the ERL guideline value for dieldrin in the OH-D-Composite and the B3-Composite. In addition, there were also elevated concentrations of chlordane above the ERM guideline value in OH-C-Composite and B3-Composite samples. The only analyte that exceeded Human Regional Screening Levels (RSLs) for soils was arsenic; however, samples exceeded this level at both the dredging and placement locations, and the concentration of arsenic at all dredge areas was less than the IH placement site (Table 4-1b).

For metals, none of the samples contained concentrations of concern, with all results below the ERL and ERM guideline values. In addition, the majority of results for cadmium, mercury, selenium, and silver were detected at concentrations between the method detection limit (MDL) and reporting limit (RL) and are estimated values.

Total detectable PAHs ranged from 242 micrograms per kilogram (μ g/kg) to 1463 μ g/kg. Phenols were mostly non-detect, except for 3/4-methylphenol in the OH-C-Composite which was detected at a concentration of 30 μ g/kg. Several phthalates were also detected in the Project sediments; however, they were also detected in the associated method blank or at J-flagged (estimated) concentrations including bis(2-ethylhexyl) phthalate, benzyl butyl phthalate, and di-n-butyl phthalate. In addition, although not detected in the method blank, results for diethyl and dimethyl phthalate were detected at concentrations between the MDL and RL and are estimated values. Diethyl phthalate was detected in four out of the five samples, with results ranging from 3.1 to 8.5 μ g/kg and dimethyl phthalate was detected at estimated concentrations in three out of the five samples, with results of 3.6 μ g/kg in B3-Composite, 5.7 μ g/kg in the OH-D-Composite, and 66 μ g/kg in the OH-C-Composite sample. Di-n-octyl phthalate was also detected at an estimated value in the OH-C-Composite (9.9 μ g/kg) and the OH-D-Composite (3.3 μ g/kg).

Total pyrethroids results were non-detect for the OH-A-Composite and B3-Composite; while the OH-B-Composite, OH-C-Composite and the OH-D-Composite had detectable results that were below 3.5 μ g/kg. The only organotin detected was dibutyltin, with concentrations of 4.7 μ g/kg in the OH-B-Composite and 4.3 μ g/kg in the B3-Composite.

Total PCB Congeners were slightly elevated above ERL guideline values in two out of five samples. The OH-C-Composite and OH-D-Composite contained a total PCB congener

concentration of 67 μ g/kg and 56 μ g/kg, respectively. The average concentration for PCB congeners in all 5 composite samples is 34.8 μ g/kg, which is slightly above the ERL of 22.7 μ g/kg.

Oil and grease concentrations were variable throughout the dredging areas. Concentrations of oil and grease ranged between 326 milligrams per kilogram (mg/kg) in the OH-B-Composite and 906 mg/kg in the OH-C-Composite. Total recoverable petroleum hydrocarbons (TRPH) was measured as HEM-SGT: Oil and Grease for the Study. Results for TRPH ranged from 120 mg/kg in the OH-A-Composite to 467 mg/kg in the OH-C-Composite.

Mean ERM Quotient

Mean ERM quotients (mERMq) were determined for each composite area (Table 4-1b). The mERMg was calculated by dividing individual chemical analytes by their respective ERM value to determine the ERM quotient (ERMq) for each. If the result for an analyte was less than the MDL, $\frac{1}{2}$ of the MDL was used to determine the ERMq. The mERMq were calculated by summing the ERMq values for each analyte and then dividing them by the total number of ERMq in the summation. Analytes that ERMg were calculated for included the metals arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc; the pesticides 4,4'-DDD/DDE/DDT, total DDTs, dieldrin, and chlordane; and the organics total PAHs and total PCB congeners. The mERMq ranged from 0.13 to 0.33 for the five composite areas with an average of 0.21. This is a simple approach to addressing chemical contamination in situations where there are multiple compounds present, and is intended for use in conjunction with the standard chemical-specific method. For other studies where mERMg have been considered, a guideline ERMg above 0.5 has been used to indicate a mixture of pollutants and elevated chemistry levels (Phillips et al. 1998). For this Study, only 4'4-DDE in the OH-D-Composite and B3-Composite and chlordane in the OH-B, C, D, and B3-Composite samples had ERMq that were above this level. None of the mERMq exceeded 0.5 for any composite area and only one analyte (chlordane) exceeded an ERM guideline). Furthermore, no more than four individual analytes were detected above an ERL guideline value in any one sample.

4.2.2 Placement Areas

Overall, the results of the analytical chemistry analyses for the placement area samples indicated very low levels of analytes detected in the sediments.

For metals, none of the samples contained concentrations of concern, with all results below the ERL and ERM guideline values. Similar to dredge area composite samples, when detected, the results for cadmium, mercury, selenium, and silver were detected at concentrations between the MDL and RL and are estimated values. The only exception was mercury detected in sample IH-Composite (concentration 0.149 μ g/kg).

Total detectable PAHs ranged from non-detect in the OH-G-Composite to $686 \ \mu g/kg$ in the IH-G-Composite. All phenols were non-detect for both samples. Once again similar to dredge area composite samples, several phthalates were detected in the placement area composite samples; however, they were also detected in the associated method blank or as estimated values.

Total pyrethroids results were non-detect for the OH-G-Composite and 2.35 μ g/kg for the IH-G-Composite. All organotins were non-detect in both samples.

Total PCB congeners were slightly elevated above the ERL guideline value in the IH-G-Composite, with a result of $31 \mu g/kg$, however they were non-detect in the OH-G-Composite.

Oil and grease concentrations were also variable in the placement areas. Concentrations of oil and grease were 113 mg/kg in the OH-G-Composite and 302 mg/kg in the IH-G-Composite. Results for TRPH were 50.3 mg/kg in the OH-G-Composite and 125 mg/kg in the IH-G-Composite.

4.3 Quality Assurance/Quality Control

The following QA/QC information was provided by the analytical laboratory and reviewed by Wood.

- <u>GC/MS Semi VOA</u>: Method 8270C SIM CON: The continuing calibration verification (CCV) associated with batch 570-30133 recovered out of control limit for PCB-170, PCB-194, PCB-201 and PCB-206. The sample associated with this CCV only needed PCB-49, therefore, the data have been reported. The following sample is impacted: OH-D-Composite (570-10671-4).
- <u>Method 8270D TQ</u>: Surrogate recovery for the following sample was outside control limits: OH-A-Composite (570-10671-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed. No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.
- Method D4464: Shell/vegetative debris in samples may affect results.
- <u>Lab Admin</u>: Pursuant to a client request via email (on October 24, 2019), analysis for TPH-DRO was cancelled.
- <u>Subcontract Work:</u> Methods Atterberg 3 pt / dry method std, Sieve + Hydrometer: These methods were subcontracted to Core Laboratories-Bakersfield. The subcontract laboratory certifications are different from that of the facility issuing the final report. The subcontract lab determined that all associated samples were non-plastic and not suitable for Atterberg testing. For that reason, results for Atterberg Limits will not be included in this report.
- <u>Method EPA 160.4 Total Volatile Solids</u>: This method was subcontracted to Weck Laboratories, Inc. The subcontract laboratory certification is different from that of the facility issuing the final report.
- For the remaining analysis, no additional quality issues were noted, other than those described in the definitions/glossary page. All are flagged with the appropriate qualifiers and are released without further action.

Location	Total Gravel (%)	Very Coarse Sand (%)	Coarse Sand (%)	Medium Sand (%)	Fine Sand (%)	Very Fine Sand (%)	Total Sand (%)	Silt (%)	Clay (%)	Total Silt & Clay (%)	Mean Grain Size (mm)	Plumb (1981) Grain Size Classification
					Core S	amples						
OH-C1-U	ND (<0.01)	ND (<0.01)	5.03	48.87	38.53	3.69	96.12	3.22	0.65	3.88	0.273	Medium Sand
OH-C1-M	ND (<0.01)	7.54	8.22	37.78	37.63	4.49	95.66	3.67	0.67	4.34	0.384	Medium Sand
OH-C1-L	ND (<0.01)	2.86	4.68	35.47	50.81	3.66	97.48	1.93	0.59	2.52	0.282	Medium Sand
OH-C1	ND (<0.01)	2.19	9.62	39.22	40.38	4.09	95.50	3.73	0.77	4.5	0.304	Medium Sand
OH-C2-U	ND (<0.01)	0.03	7.82	51.17	38.18	1.49	98.69	0.87	0.43	1.3	0.299	Medium Sand
OH-C2-M	ND (<0.01)	ND (<0.01)	3.24	54.9	38.84	1.57	98.55	1.07	0.39	1.45	0.282	Medium Sand
OH-C2-L ¹	ND (<0.01)	ND (<0.01)	2.01	47.76	45.72	2.54	98.03	1.58	0.39	1.97	0.262	Medium Sand
OH-C2	ND (<0.01)	ND (<0.01)	2.66	54.94	41.14	1.25	99.99	ND (<0.01)	ND (<0.01)	ND (<0.01)	0.281	Medium Sand
OH-C3-U	ND (<0.01)	ND (<0.01)	5.03	58.61	35.33	1.03	100.00	ND (<0.01)	ND (<0.01)	ND (<0.01)	0.300	Medium Sand
OH-C3-M	ND (<0.01)	0.01	4.24	43.54	44.38	4.83	97.00	2.45	0.55	3.01	0.261	Medium Sand
OH-C3-L	ND (<0.01)	ND (<0.01)	3.72	30.70	54.54	6.24	95.20	4.1	0.71	4.81	0.232	Fine Sand
OH-C3	ND (<0.01)	0.03	3.61	34.28	50.74	6.6	95.26	3.98	0.76	4.74	0.239	Fine Sand
OH-C4-U	ND (<0.01)	0.06	3.90	30.90	55.55	7.32	97.73	1.81	0.46	2.27	0.238	Fine Sand
OH-C4-M	ND (<0.01)	0.09	5.65	31.9	49.78	8.23	95.65	3.74	0.63	4.36	0.246	Fine Sand
OH-C4-L	ND (<0.01)	ND (<0.01)	6.03	20.91	48.73	12.89	88.56	10.14	1.3	11.44	0.214	Fine Sand
OH-C4	ND (<0.01)	ND (<0.01)	3.64	22.97	50.91	13.33	90.85	8.10	1.04	9.14	0.207	Fine Sand
OH-C5-U	ND (<0.01)	0.50	3.93	35.15	52.2	6.26	98.04	1.43	0.55	1.97	0.251	Medium Sand
OH-C5-M	ND (<0.01)	0.02	3.5	22.46	57.87	10.87	94.72	4.29	0.99	5.28	0.214	Fine Sand
OH-C5-L						NO SA	MPLE					
OH-C5	ND (<0.01)	0.09	4.19	23.42	57.75	10.49	95.94	3.27	0.79	4.06	0.223	Fine Sand
OH-C6-U	ND (<0.01)	ND (<0.01)	2.58	30.34	55.47	9.62	98.01	1.44	0.54	1.98	0.227	Fine Sand
OH-C6-M	ND (<0.01)	ND (<0.01)	3.32	20.61	54.12	15.18	93.23	5.87	0.89	6.76	0.203	Fine Sand
OH-C6-L						NO SA	MPLE					
OH-C6	ND (<0.01)	0.09	4.91	26.01	49.27	11.99	92.27	6.77	0.97	7.74	0.225	Fine Sand
OH-C7-U	ND (<0.01)	ND (<0.01)	4.68	41.89	41.53	4.98	93.08	6.13	0.79	6.91	0.254	Medium Sand
OH-C7-M	ND (<0.01)	ND (<0.01)	0.46	39.81	54.29	4.01	98.57	0.01	0.43	1.44	0.240	Fine Sand
OH-C7-L						NO SA	MPLE					
OH-C7	ND (<0.01)	0.05	9.51	38.1	41.27	5.16	94.09	5.17	0.73	5.91	0.280	Medium Sand
OH-C8-U	ND (<0.01)	ND (<0.01)	1.44	18.79	62.35	12.91	95.49	3.65	0.86	4.51	0.199	Fine Sand
OH-C8-M	ND (<0.01)	ND (<0.01)	1.19	45.32	44.78	4.49	95.78	3.54	0.68	4.22	0.250	Medium Sand
OH-C8-L ¹	ND (<0.01)	0.11	6.35	31.11	46.57	8.83	92.97	6.19	0.83	7.02	0.247	Fine Sand

Table 4-1a. King Harbor Grain Size Analysis Results

					Core Sa	amples						
Location	Total Gravel (%)	Very Coarse Sand (%)	Coarse Sand (%)	Medium Sand (%)	Fine Sand (%)	Very Fine Sand (%)	Total Sand (%)	Silt (%)	Clay (%)	Total Silt & Clay (%)	Mean Grain Size (mm)	Plumb (1981) Grain Size Classification
OH-C8	ND (<0.01)	0.090	5.28	28.82	50.91	11.01	96.11	3.24	0.65	3.89	0.237	Fine Sand
OH-C9-U	ND (<0.01)	ND (<0.01)	4.59	27.45	49.60	11.31	92.95	6.13	0.92	7.05	0.224	Fine Sand
OH-C9-M	ND (<0.01)	2.8	5.13	42.59	43.91	3.62	98.05	1.53	0.42	1.94	0.299	Medium Sand
OH-C9-L	ND (<0.01)	ND (<0.01)	3.96	22.04	49.88	14.61	90.49	8.43	1.09	9.52	0.205	Fine Sand
OH-C9	ND (<0.01)	0.04	6.18	30.30	48.85	9.30	94.67	4.60	0.74	5.34	0.245	Fine Sand
OH-C10-U	ND (<0.01)	10.97	6.22	32.74	43.16	5.18	98.27	1.34	0.4	1.73	0.415	Medium Sand
OH-C10-M	ND (<0.01)	ND (<0.01)	2.24	20.46	49.89	18.79	91.38	7.63	1.00	8.62	0.192	Fine Sand
OH-C10-L	ND (<0.01)	ND (<0.01)	2.26	18.64	44.34	20.48	85.72	13.01	1.27	14.28	0.178	Fine Sand
OH-C10	ND (<0.01)	0.07	12.28	23.39	44.85	11.88	92.47	6.51	1.02	7.53	0.269	Medium Sand
OH-C11-U	ND (<0.01)	0.01	4.55	25.35	54.25	11.53	95.69	3.53	0.79	4.31	0.225	Fine Sand
OH-C11-M	ND (<0.01)	ND (<0.01)	1.07	24.76	57.89	10.82	94.54	4.75	0.71	5.47	0.205	Fine Sand
OH-C11-L	ND (<0.01)	ND (<0.01)	0.31	16.86	48.13	19.57	84.87	13.46	1.68	15.13	0.168	Fine Sand
OH-C11	ND (<0.01)	ND (<0.01)	ND (<0.01)	1.66	24.53	21.56	47.75	47.36	4.89	52.26	0.080	Very Fine Sand
OH-C12-U	ND (<0.01)	0.01	12.91	22.54	35.2	17.73	88.39	10.63	0.99	11.61	0.247	Fine Sand
OH-C12-M	ND (<0.01)	ND (<0.01)	5.5	13.63	44.31	24.1	87.54	11.09	1.36	12.46	0.185	Fine Sand
OH-C12-L	ND (<0.01)	ND (<0.01)	2.98	15.45	47.39	22.3	88.12	10.47	1.41	11.88	0.179	Fine Sand
OH-C12	ND (<0.01)	ND (<0.01)	2.31	18.57	48.12	20.82	89.82	9.02	1.17	10.19	0.184	Fine Sand
		T		I	Bas		1			Ι	1	
B3-C1-U	ND (<0.01)	6.55	10.56	41.49	34.94	3.46	97.00	2.88	0.13	3.00	0.402	Medium Sand
B3-C1-M	ND (<0.01)	ND (<0.01)	4.17	20.88	35.23	15.02	75.30	22.43	2.27	24.7	0.181	Fine Sand
B3-C1-L	ND (<0.01)	0.49	22.54	25.22	34.54	11.60	94.39	4.02	1.60	5.62	0.327	Medium Sand
B3-C1	ND (<0.01)	0.11	11.25	38.68	36.76	5.78	92.58	6.27	1.15	7.42	0.284	Medium Sand
B3-C2-U	ND (<0.01)	0.04	5.62	34.54	44.50	6.69	91.39	7.49	1.12	8.60	0.244	Fine Sand
B3-C2-M	ND (<0.01)	12.36	16.57	35.81	29.09	2.92	96.75	2.69	0.56	3.25	0.477	Medium Sand
B3-C2-L	ND (<0.01)	ND (<0.01)	19.36	33.65	24.91	5.45	83.37	13.98	2.65	16.62	0.303	Medium Sand
B3-C2	ND (<0.01)	0.260	25.29	33.76	27.95	4.66	91.92	7.09	0.99	8.09	0.355	Medium Sand
B3-C3-U	ND (<0.01)	13.22	5.75	47.23	28.77	2.39	97.36	2.66	ND (<0.01)	2.66	0.493	Medium Sand
В3-С3-М	ND (<0.01)	ND (<0.01)	10.71	46.03	31.68	3.92	92.34	6.69	0.97	7.66	0.297	Medium Sand
B3-C3-L	ND (<0.01)	ND (<0.01)	3.40	35.16	50.17	6.41	95.14	4.03	0.83	4.86	0.241	Fine Sand
B3-C3	ND (<0.01)	ND (<0.01)	7.1	47.83	37.67	3.06	95.66	3.65	0.69	4.34	0.283	Medium Sand

Table 4-1a. King Harbor Grain Size Analysis Results (Continued)

						Grab Sam	ples					
Location	Total Gravel (%)	Very Coarse Sand (%)	Coarse Sand (%)	Medium Sand (%)	Fine Sand (%)	Very Fine Sand (%)	Total Sand (%)	Silt (%)	Clay (%)	Total Silt & Clay (%)	Mean Grain Size (mm)	Plumb (1981) Grain Size Classification
OH-G1	ND (<0.01)	ND (<0.01)	ND (<0.01)	21.66	67.69	9.51	98.86	1.14	ND (<0.01)	1.14	0.208	Fine Sand
OH-G2	ND (<0.01)	5.00	64.70	23.55	5.74	0.57	99.56	0.43	0.01	0.43	0.615	Coarse Sand
OH-G3	ND (<0.01)	ND (<0.01)	2.05	41.92	52.88	3.14	99.99	ND (<0.01)	ND (<0.01)	ND (<0.01)	0.254	Medium Sand
OH-G4	ND (<0.01)	0.56	16.13	17.14	46.37	15.32	95.52	3.72	0.76	4.48	0.276	Medium Sand
OH-G5	ND (<0.01)	24.06	55.52	16.49	2.82	0.59	99.48	0.42	0.12	0.54	0.786	Coarse Sand
IH-G1	ND (<0.01)	ND (<0.01)	ND (<0.01)	3.56	21.14	25.50	50.20	45.94	3.86	49.80	0.084	Very Fine Sand
IH-G2	ND (<0.01)	ND (<0.01)	ND (<0.01)	2.3	25.43	25.15	52.88	43.36	3.76	47.12	0.087	Very Fine Sand
IH-G3	ND (<0.01)	ND (<0.01)	ND (<0.01)	6.86	37.58	22.21	66.65	30.39	2.96	33.34	0.116	Very Fine Sand
IH-G4	ND (<0.01)	ND (<0.01)	ND (<0.01)	3.59	19.45	24.42	47.46	48.12	4.42	52.54	0.080	Very Fine Sand
IH-G5	ND (<0.01)	ND (<0.01)	ND (<0.01)	7.35	25.00	27.69	60.04	36.87	3.09	39.96	0.103	Very Fine Sand
						Composite Area	Samples					
OH-A- Composite	ND (<0.01)	ND (<0.01)	5.43	43.58	42.23	4.42	95.66	3.59	0.76	4.34	0.266	Medium Sand
OH-B- Composite	ND (<0.01)	ND (<0.01)	0.79	24.51	57.85	10.92	94.07	4.96	0.97	5.93	0.204	Fine Sand
OH-C- Composite	ND (<0.01)	0.01	4.57	33.35	47.80	9.06	94.79	4.47	0.73	5.20	0.239	Fine Sand
OH-D- Composite	ND (<0.01)	ND (<0.01)	4.47	21.98	46.42	17.03	89.90	8.91	1.20	10.11	0.204	Fine Sand
B3-Composite	ND (<0.01)	ND (<0.01)	12.58	41.82	33.76	4.78	92.94	5.84	1.21	7.06	0.293	Medium Sand
OH-G- Composite	ND (<0.01)	10.43	38.13	22.66	23.36	4.31	98.89	0.83	0.28	1.11	0.531	Coarse Sand
IH-G- Composite	ND (<0.01)	ND (<0.01)	ND (<0.01)	4.25	24.31	23.90	52.46	43.20	4.34	47.54	0.089	Very Fine Sand

Table 4-1a. King Harbor Grain Size Analysis Results (Continued)

Notes: ND = Non-Detect

1. Sample results for OH-C2-L and OH-C8-L do not represent the layer between the design depth and the over dredge depth (i.e. last two feet of sediment). Sample OH-C2-L represents the depth from 6.0 to 8.1' feet and sample OH-C8-L represents the depth from approximately 4.0 to 6.6 feet below the sediment water interface.

			Sedim	nent Qual	ity Guidelines						Dredging Areas						Pla	cemer	nt Areas	
Analytical Method	Compound Name	Units	ERL (dry wt.)	ERM (dry wt.)	Humar <u>Residential</u>	n RSLs Industrial	OH-A-Composite		OH-B-Composi		OH-C-Compos		OH-D-Composit	e	B3-Composit	te	OH-G-Compos	site	IH-Composit	ie
SM 2540 B (M)	Total Solids	%					71.6		67.4		69.6		66.7		73.9		79.3		63.6	
EPA 9060A	Total Organic Carbon	%					0.467		0.989		2.39		1.83		0.837		0.245		1.85	
SM 4500-NH ₃ B/C (M)	Ammonia (as N)	mg/kg					3.13		6.65		8.84		3.36		5.68		3.18		2.64	
EPA 376.2M	Total Sulfide	mg/kg					11.4		311		783		757		88.3		2.28		147	
EPA 376.2M	Dissolved Sulfide	mg/kg					ND (<0.100)		ND (<0.0999)		ND (<0.100)		ND (<0.100)		ND (<0.100)		ND (<0.100)		ND (<0.0999)	
EPA 1664A (M)	HEM: Oil and Grease	mg/kg					356		326		906		744		640		113		302	
EPA 9045C	pH	S.U.					8.6		8.0		7.9		8.1		8.4		7.9		7.9	
Metals		0.01	1	<u> </u>			0.0	-	0.0		1.0		0.1		0.1		1.0		1.0	
EPA 6020	Arsenic	mg/kg	8.2	70	0.68	3.0	2.29		2.72		3.18		2.46		1.87		2.72		<u>4.61</u>	
EPA 6020	Cadmium	mg/kg	1.2	9.6	71	980	ND (<1.43)		0.183	J	ND (<1.43)		0.242	J	0.163	J	ND (<1.27)		0.472	
EPA 6020	Chromium	mg/kg	81	<u>370</u>			12.7		15.8		13.2		20.7	-	12.9		6.97		32.3	Ť
EPA 6020	Copper	mg/kg	34	270	3100	47000	11.5		7.63		7.11		11.5	-+	9.0		1.94		30.6	+
EPA 6020	Lead	mg/kg	46.7	218	400	800	12.1		21.9		18.1		21.5		8.99		3.46		31.2	
EPA 7471A	Mercury	mg/kg	0.15	0.71	11	46	0.0372 J	1	0.0713	J	0.0517		0.0674	.1	0.0505		0.0306	J	0.149	
EPA 6020	Nickel	mg/kg	20.9	<u>51.6</u>	1500 ¹	22000 ¹	7.14	,	9.0	Ŭ	6.99		11.3	•	7.2	Ű	4.51	Ū	16.7	+
EPA 6020	Selenium	mg/kg			390	5,800	ND (<1.43)		ND (<1.48)		0.824		0.73	.1	ND (<1.32)		ND (<1.27)		0.622	
EPA 6020	Silver	mg/kg	1.0	3.7	390	5,800	ND (<1.43)		0.853	1	0.288	1	0.253	1	ND (<1.32)		ND (<1.27)		0.358	
EPA 6020	Zinc	mg/kg	150	<u>410</u>	23,000	350,000	34.1		42.2	0	54.6	0	60.6	•	33.6		13.7		81.5	-
	HEM - SGT: Oil and		150	<u>-10</u>	20,000	000,000														+
EPA 1664A (M)	Grease	mg/kg	•				120		143		467		305		242		50.3		125	
Polycyclic Aromatic Hydrocar			1							II				I		<u>I I</u>				
EPA 8270C SIM	1,6,7-Trimethylnaphthalene	µg/kg	l .	l .			ND (<14)	Т	ND (<15)		ND (<14)		ND (<15)		ND (<13)		ND (<13)		ND (<16)	
EPA 8270C SIM	1-Methylnaphthalene	µg/kg			18,000	73,000	ND (<14)		ND (<15)		4.5	J	ND (<15)		ND (<13)		ND (<13)		ND (<16)	+
EPA 8270C SIM	1-Methylphenanthrene	µg/kg				10,000	ND (<14)		ND (<15)		ND (<14)	•	ND (<15)		ND (<13)		ND (<13)		ND (<16)	+
EPA 8270C SIM	2,6-Dimethylnaphthalene	µg/kg					ND (<14)		8.9	J	28		30		5.8	J	ND (<13)		45	
EPA 8270C SIM	2-Methylnaphthalene	µg/kg	70	670	240,000	3,000,000	ND (<14)		5.0	J	5.8	J	6.8	J	ND (<13)		ND (<13)		5.6	
EPA 8270C SIM	Acenaphthene	µg/kg	16	500	3,600,000	45,000,000	ND (<14)		ND (<15)	•	14	•	5.4	J	4.6	J	ND (<13)		ND (<16)	Ť
EPA 8270C SIM	Acenaphthylene	µg/kg	44	640	0,000,000		ND (<14)		ND (<15)		6.0	J	8.5	J	4.9	J	ND (<13)		4.9	
EPA 8270C SIM	Anthracene	µg/kg	85.3	1100	18,000,000	230,000,000	2.9 J	J	4.5	J	32	•	26	-	18		ND (<13)		15	J
EPA 8270C SIM	Benzo (a) Anthracene	µg/kg	261	1600	1,100	21,000	20		18	Ŭ	100		93		33		ND (<13)		47	I
EPA 8270C SIM	Benzo (a) Pyrene	µg/kg	430	1600	110	2,100	22		17		97		98		36		ND (<13)		50	
EPA 8270C SIM	Benzo (b) Fluoranthene	µg/kg			1,100	21,000	19		16		89		88		52		ND (<13)		52	
EPA 8270C SIM	Benzo (e) Pyrene	µg/kg			.,		19		16		73		76		28		ND (<13)		44	
EPA 8270C SIM	Benzo (g,h,i) Perylene	µg/kg					14		13	.1	47		50		12		ND (<13)		31	+
EPA 8270C SIM	Benzo (k) Fluoranthene	µg/kg			11,000	210,000	18		12	J	92		85		41		ND (<13)		51	+
EPA 8270C SIM	Biphenyl	µg/kg			,		ND (<14)		ND (<15)	Ŭ	14		8.9	J	ND (<13)		ND (<13)		ND (<16)	+
EPA 8270C SIM	Chrysene	µg/kg	384	2800	110,000	2,100,000	27		22		160		160	-	43		ND (<13)		70	+ - 1
EPA 8270C SIM	Dibenz (a,h) Anthracene	µg/kg	63.4	260	110	2,100	ND (<14)		ND (<15)		ND (<14)		9.5	J	ND (<13)		ND (<13)		5.4	+
EPA 8270C SIM	Dibenzothiophene	µg/kg		200		2,100	ND (<14)		ND (<15)		7.6	.1	5.9		2.9		ND (<13)		ND (<16)	+
EPA 8270C SIM	Fluoranthene	µg/kg	600	5100	2,400,000	30,000,000	31		33		170	0	250	-	87		ND (<13)		78	+
EPA 8270C SIM	Fluorene	µg/kg	19	540	2,400,000	30,000,000	ND (<14)		3.6	.1	170	.1	6.5		4.2		ND (<13)		3.6	
EPA 8270C SIM	Indeno (1,2,3-c,d) Pyrene	µg/kg		<u>0+0</u>	1,100	21,000	13 J	1	11	.1	42	U	48	5	12		ND (<13)		28	+

Table 4-1b. King Harbor Analytical Chemistry Results

			Sedin	nent Qual	ity Guidelines	-		-		Dredging Areas						Plac	ement	t Areas	
Analytical Method	Compound Name	Units	ERL (dry wt.)	ERM (dry wt.)	Human RSLs <u>Residential</u> Industrial	OH-A-Compos	ite	OH-B-Composi	te	OH-C-Compos		OH-D-Composite	e I	B3-Composit	e	OH-G-Composi		IH-Composite	3
EPA 8270C SIM	Isophorone	µg/kg				ND (<690)		ND (<740)		3.1	J B	ND (<740)	1	ND (<670)		ND (<630)		ND (<780)	
EPA 8270C SIM	Naphthalene	µg/kg	160	2100	3,800 17,000	ND (<14)		4.7	J	13	J	11 .	J	4.7	J	ND (<13)		6.2	J
EPA 8270C SIM	Perthane	µg/kg		· ·	· · · · · · · · · · · · · · · · · · ·	ND (<14)		ND (<15)		ND (<14)		ND (<15)		ND (<13)		ND (<13)		ND (<16)	1
EPA 8270C SIM	Perylene	µg/kg				ND (<14)		13	J	46		ND (<15)		ND (<13)		ND (<13)		24	1
EPA 8270C SIM	Phenanthrene	µg/kg	240	1500		12	J	15		82		66		33		ND (<13)		32	1
EPA 8270C SIM	Pyrene	µg/kg	665	2600	1,800,000 <u>23,000,000</u>	44		41		220		330		120		ND (<13)		93	
	Total Detectable PAHs	µg/kg	4022	44792		242	J	254	J	1358	J B	1463 、	J	542	J	0		686	J
Phenols and Phthalates		<u> </u>						•		•		-				•			
EPA 8270C SIM	2,4,5-Trichlorophenol	µg/kg			6,300,000 <u>82,000,000</u>	ND (<14)		ND (<15)		ND (<14)		ND (<15)		ND (<13)		ND (<13)		ND (<16)	1
EPA 8270C SIM	2,4,6-Trichlorophenol	µg/kg			49,000 210,000	ND (<14)		ND (<15)		ND (<14)		ND (<15)		ND (<13)		ND (<13)		ND (<16)	ı
EPA 8270C SIM	2,4-Dichlorophenol	µg/kg			190,000 <u>2,500,000</u>	ND (<14)		ND (<15)		ND (<14)		ND (<15)		ND (<13)		ND (<13)		ND (<16)	·
EPA 8270C SIM	2,4-Dimethylphenol	µg/kg			1,300,000 16,000,000	ND (<690)		ND (<740)		ND (<710)		ND (<740)		ND (<670)		ND (<630)		ND (<780)	1
EPA 8270C SIM	2,4-Dinitrophenol	µg/kg			130,000 <u>1,600,000</u>	ND (<690)		ND (<740)		ND (<710)		ND (<740)	1	ND (<670)		ND (<630)		ND (<780)	
EPA 8270C SIM	2-Chlorophenol	µg/kg			<u>390,000 <u>5,800,000</u></u>	ND (<14)		ND (<15)		ND (<14)		ND (<15)		ND (<13)		ND (<13)		ND (<16)	
EPA 8270C SIM	2-Methylphenol	µg/kg				ND (<14)		ND (<15)		ND (<14)		ND (<15)		ND (<13)		ND (<13)		ND (<16)	
EPA 8270C SIM	2-Nitrophenol	µg/kg	•			ND (<690)		ND (<740)		ND (<710)		ND (<740)		ND (<670)		ND (<630)		ND (<780)	1
EPA 8270C SIM	3/4-Methylphenol	µg/kg	•			ND (<14)		ND (<15)		30		ND (<15)		ND (<13)		ND (<13)		ND (<16)	1
EPA 8270C SIM	4,6-Dinitro-2-Methylphenol	µg/kg				ND (<690)		ND (<740)		ND (<710)		ND (<740)	1	ND (<670)		ND (<630)		ND (<780)	ı
EPA 8270C SIM	4-Chloro-3-Methylphenol	µg/kg	•			ND (<14)		ND (<15)		ND (<14)		ND (<15)		ND (<13)		ND (<13)		ND (<16)	1
EPA 8270C SIM	4-Nitrophenol	µg/kg				ND (<690)		ND (<740)		ND (<710)		ND (<740)	1	ND (<670)		ND (<630)		ND (<780)	
EPA 8270C SIM	Pentachlorophenol	µg/kg			1,000 <u>4,000</u>	ND (<690)		ND (<740)		ND (<710)		18 .	JL	ND (<670)		ND (<630)		ND (<780)	
EPA 8270C SIM	2,3,4,6-Tetrachlorophenol	µg/kg				ND (<14)		ND (<15)		ND (<14)		ND (<15)		ND (<13)		ND (<13)		ND (<16)	
EPA 8270C SIM	2,6-Dichlorophenol	µg/kg				ND (<14)		ND (<15)		ND (<14)		ND (<15)		ND (<13)		ND (<13)		ND (<16)	
EPA 8270C SIM	Bis(2-Ethylhexyl) Phthalate	µg/kg			39,000 <u>160,000</u>	49	J	480	В	550	В	1700 E	В	71	В	14	J B	270	В
EPA 8270C SIM	Butyl Benzyl Phthalate	µg/kg			290,000 <u>1,200,000</u>	22	J	25	J B	81	В	44 E	J B	22	J B	14	J B	58	J B
EPA 8270C SIM	Di-n-Butyl Phthalate	µg/kg			6,300,000 <u>82,000,000</u>	27	J	23	J B	25	J B	40 E	J B	28	J B	24	J B	150	В
EPA 8270C SIM	Di-n-Octyl Phthalate	µg/kg			630,000 <u>8,200,000</u>	ND (<69)		ND (<74)		ND (<71)		9.9	J	3.3	J	ND (<63)		11	J
EPA 8270C SIM	Diethyl Phthalate	µg/kg			51,000,000 <u>660,000,000</u>	3.1	J	3.6	J	6.3	J	3.9 .	J	8.5	J	3.5	J	5.1	J
EPA 8270C SIM	Dimethyl Phthalate	µg/kg	•			ND (<69)		ND (<74)		66	J	5.7 .	J	3.6	J	ND (<63)		6.3	J
Chlorinated Pesticides																			
EPA 8081A	2,4'-DDD	µg/kg	•	•		ND (<1.4)		ND (<1.5)		ND (<1.4)		ND (<1.5)		ND (<1.3)		ND (<1.3)		ND (<1.6)	i
EPA 8081A	2,4'-DDE	µg/kg				1.3	J p	ND (<2.9)		ND (<2.8)		11		1.8	J p	ND (<2.7)		ND (<3.1)	-
EPA 8081A	2,4'-DDT	µg/kg				ND (<1.4)	1.	ND (<1.5)		ND (<1.4)		ND (<1.5)		ND (<1.3)		ND (<1.3)		ND (<1.6)	ı —
EPA 8081A	4,4'-DDD	µg/kg	2.0	<u>20</u>	1,900 <u>9,600</u>	ND (<1.4)		ND (<1.5)		ND (<1.4)		ND (<1.5)		ND (<1.3)		ND (<1.3)		ND (<1.6)	
EPA 8081A	4,4'-DDE	µg/kg	2.2	27	2,000 <u>9,300</u>	11	_	7.9		11	р	14		19		0.71	J	20	
EPA 8081A	4,4'-DDT	µg/kg	1.0	7.0	1,900 <u>8,500</u>	ND (<1.4)	_	ND (<1.5)		ND (<1.4)		ND (<1.5)		ND (<1.3)		ND (<1.3)		ND (<1.6)	1

Table 4-1b. King Harbor Analytical Chemistry Results (Continued)

			Sedim	ent Qual	ity Guidelines					Dredging Areas					Pla	aceme	nt Areas
Analytical Method	Compound Name	Units	ERL (dry wt.)	ERM (dry wt.)	Human RSLs <u>Residential</u> Industrial	OH-A-Composi	ite	OH-B-Compos	ite	OH-C-Composite	OH-D-Compos	site	B3-Composite	OF	I-G-Compo	site	IH-Composite
	Total Detectable DDTs	µg/kg	1.58	<u>46.1</u>	-	12.3		7.9		11 p	25		20.8	J	0.71	J	20
EPA 8081A	Aldrin	µg/kg	•		39 180	ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)	N	ID (<1.3)		ND (<1.6)
EPA 8081A	Alpha-BHC	µg/kg				ND (<2.8)		ND (<2.9)		ND (<2.8)	ND (<3.0)		ND (<2.7)		ID (<2.5)		ND (<3.1)
EPA 8081A	Beta-BHC	µg/kg				ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)		ID (<1.3)		ND (<1.6)
EPA 8081A	Delta-BHC	µg/kg	•			ND (<2.8)		ND (<2.9)		ND (<2.8)	ND (<3.0)		ND (<2.7)		ID (<2.5)		ND (<3.1)
EPA 8081A	Gamma-BHC	µg/kg	•			ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)		ID (<1.3)		ND (<1.6)
EPA 8081A	Chlordane	µg/kg	0.5	<u>6.0</u>	1,700 <u>7,700</u>	2.5	J p	4.3	J	<u>21</u>	ND (<15)		<u>12</u>	J N	ND (<13)		<u>11</u> J
EPA 8081A	Dieldrin	µg/kg	0.02	<u>8.0</u>	34 <u>140</u>	ND (<1.4)	1	ND (<1.5)		ND (<1.4)	0.5	J p	0.69	J N	ID (<1.3)		ND (<1.6)
EPA 8081A	Trans-nonachlor	µg/kg				ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)	N	ID (<1.3)		ND (<1.6)
EPA 8081A	Endosulfan I	µg/kg			470,000 <u>7,000,000</u>	ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)	N	ID (<1.3)		ND (<1.6)
EPA 8081A	Endosulfan II	µg/kg				ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)	N	ID (<1.3)		ND (<1.6)
EPA 8081A	Endosulfan Sulfate	µg/kg			380,000 <u>4,900,000</u>	ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)	N	ID (<1.3)		ND (<1.6)
EPA 8081A	Endrin	µg/kg			19,000 <u>250,000</u>	ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)	N	ID (<1.3)		ND (<1.6)
EPA 8081A	Endrin Aldehyde	µg/kg				ND (<2.8)		ND (<2.9)		ND (<2.8)	ND (<3.0)		ND (<2.7)	N	ID (<2.5)		ND (<3.1)
EPA 8081A	Endrin Ketone	µg/kg				ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)	N	ID (<1.3)		ND (<1.6)
EPA 8081A	Heptachlor	µg/kg			130 <u>630</u>	ND (<1.4)		ND (<1.5)		ND (<1.4)	0.51	J	ND (<1.3)	N	ID (<1.3)		ND (<1.6)
EPA 8081A	Heptachlor Epoxide	µg/kg			70 <u>330</u>	ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)	N	ID (<1.3)		ND (<1.6)
EPA 8081A	Methoxychlor	µg/kg	•		320,000 <u>4,100,000</u>	ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)	N	ID (<1.3)	F2	ND (<1.6)
EPA 8081A	Toxaphene	µg/kg	•	•	490 <u>2,100</u>	ND (<28)		ND (<29)		ND (<28)	ND (<30)		ND (<27)	Ν	ND (<25)		ND (<31)
EPA 8081A	Alpha Chlordane	µg/kg				0.34	J p	ND (<1.5)		3.4 p	2.8	р	0.43	J N	ID (<1.3)		9.5
EPA 8081A	Gamma Chlordane	µg/kg				ND (<2.8)		ND (<2.9)		ND (<2.8)	ND (<3.0)		ND (<2.7)	N	ID (<2.5)		12 p
EPA 8081A	Cis-nonachlor	µg/kg				ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)	N	ID (<1.3)		ND (<1.6)
EPA 8081A	Oxychlordane	µg/kg				ND (<1.4)		ND (<1.5)		ND (<1.4)	ND (<1.5)		ND (<1.3)	N	ID (<1.3)		ND (<1.6)
Polychlorinated Biphenyl C	ongeners																
EPA 8270C SIM PCB Congeners	PCB018	µg/kg				ND (<0.28)		ND (<0.29)		ND (<0.28)	ND (<0.30)		ND (<0.27)	N	D (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB028	µg/kg				ND (<0.28)		ND (<0.29)		ND (<0.28)	ND (<0.30)		ND (<0.27)	N	D (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB037	µg/kg	•			ND (<0.28)		ND (<0.29)		ND (<0.28)	ND (<0.30)		ND (<0.27)	N	D (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB044	µg/kg				ND (<0.28)		ND (<0.29)		ND (<0.28)	ND (<0.30)		ND (<0.27)	N	D (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB049	µg/kg				ND (<0.28)		ND (<0.29)		ND (<0.28)	2.0		ND (<0.27)	N	D (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB052	µg/kg				ND (<0.28)		ND (<0.29)		ND (<0.28)	3.4		ND (<0.27)	N	D (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB066	µg/kg				0.41		ND (<0.29)		0.64	2.5		ND (<0.27)	N	D (<0.25)		1.3

Table 4-1b. King Harbor Analytical Chemistry Results (Continued)

			Sedim	nent Quality (Guidelines	-			· .	Dredging Areas			Placem	ent Areas
Analytical Method	Compound Name	Units	ERL (dry wt.)	ERM (dry wt.)	Hum <u>Residentia</u>	an RSLs al <u>Industrial</u>	OH-A-Composit	e	OH-B-Composit	OH-C-Composite	OH-D-Composite	B3-Composite	OH-G-Composite	IH-Composite
EPA 8270C SIM PCB Congeners	PCB070	µg/kg					1.1		ND (<0.29)	2.6	4.9	ND (<0.27)	ND (<0.25)	1.0
EPA 8270C SIM PCB Congeners	PCB074	µg/kg					ND (<0.28)		ND (<0.29)	ND (<0.28)	1.8	ND (<0.27)	ND (<0.25)	ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB077	µg/kg			38	<u>160</u>	ND (<0.28)		ND (<0.29)	ND (<0.28)	ND (<0.30)	ND (<0.27)	ND (<0.25)	ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB081	µg/kg			12	<u>48</u>	ND (<0.28)		ND (<0.29)	ND (<0.28)	ND (<0.30)	ND (<0.27)	ND (<0.25)	ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB087	µg/kg					0.51		ND (<0.29)	2.0	1.4	ND (<0.27)	ND (<0.25)	ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB099	µg/kg					1.1		0.87	3.1	2.6	1.7	ND (<0.25)	2.3
EPA 8270C SIM PCB Congeners	PCB101	µg/kg					1.8		1.8	5.6	4.8	2.5	ND (<0.25)	3.5
EPA 8270C SIM PCB Congeners	PCB105	µg/kg			120	<u>490</u>	1.2		ND (<0.29)	2.8	ND (<0.30)	ND (<0.27)	ND (<0.25)	ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB110	µg/kg					1.8		1.9	4.7	4.9	1.9	ND (<0.25)	3.0
EPA 8270C SIM PCB Congeners	PCB114	µg/kg			120	<u>500</u>	ND (<0.28)		ND (<0.29)	ND (<0.28)	ND (<0.30)	ND (<0.27)	ND (<0.25)	ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB118	µg/kg			120	<u>490</u>	1.9		1.4	4.8	4.8	1.7	ND (<0.25)	4.8
EPA 8270C SIM PCB Congeners	PCB119	µg/kg					ND (<0.28)		ND (<0.29)	ND (<0.28)	ND (<0.30)	ND (<0.27)	ND (<0.25)	ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB123	µg/kg			120	<u>490</u>	ND (<0.28)		ND (<0.29)	ND (<0.28)	ND (<0.30)	ND (<0.27)	ND (<0.25)	ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB126	µg/kg			0.036	<u>0.15</u>	ND (<0.28)		ND (<0.29)	ND (<0.28)	ND (<0.30)	ND (<0.27)	ND (<0.25)	ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB128	µg/kg					ND (<0.28)		ND (<0.29)	ND (<0.28)	ND (<0.30)	ND (<0.27)	ND (<0.25)	ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB 132/153	µg/kg					2.3		3.8	7	6.4	2.3	ND (<0.50)	4.7
EPA 8270C SIM PCB Congeners	PCB 138/158	µg/kg					2.7		3.8	7.3	6.5	ND (<0.54)	ND (<0.50)	3.9
EPA 8270C SIM PCB Congeners	PCB149	µg/kg					1.4		1.9	4.1	3.1	ND (<0.27)	ND (<0.25)	2.5
EPA 8270C SIM PCB	PCB151	µg/kg					ND (<0.28)		ND (<0.29)	2.3	ND (<0.30)	ND (<0.27)	ND (<0.25)	ND (<0.31)
Congeners EPA 8270C SIM PCB	PCB156	µg/kg			120	<u>500</u>	ND (<0.28)		ND (<0.29)	ND (<0.28)	ND (<0.30)	ND (<0.27)	ND (<0.25)	ND (<0.31)
Congeners EPA 8270C SIM PCB Congeners	PCB157	µg/kg			120	500	ND (<0.28)		ND (<0.29)	ND (<0.28)	ND (<0.30)	ND (<0.27)	ND (<0.25)	ND (<0.31)

Table 4-1b. King Harbor Analytical Chemistry Results (Continued)

			Sedim	nent Qual	ity Guidelines						Dredging Areas				Pla	cemer	nt Areas
Analytical Method	Compound Name	Units	ERL (dry wt.)	ERM (dry wt.)	Human I	RSLs Industrial	OH-A-Composi	te	OH-B-Composi	te	OH-C-Composite	OH-D-Compos	ite	B3-Composite	OH-G-Compos		IH-Composite
EPA 8270C SIM PCB Congeners	PCB167	µg/kg			110	<u>380</u>	ND (<0.28)		ND (<0.29)		ND (<0.28)	ND (<0.30)		ND (<0.27)	ND (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB168	µg/kg					ND (<0.28)		ND (<0.29)		ND (<0.28)	ND (<0.30)		ND (<0.27)	ND (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB169	µg/kg			0.12	<u>0.51</u>	ND (<0.28)		ND (<0.29)		ND (<0.28)	ND (<0.30)		ND (<0.27)	ND (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB170	µg/kg					ND (<0.28)		1.1		ND (<0.28)	ND (<0.30)		ND (<0.27)	ND (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB177	µg/kg					ND (<0.28)		0.47		ND (<0.28)	ND (<0.30)		ND (<0.27)	ND (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB180	µg/kg					0.76		2.3		3.2	2.5		ND (<0.27)	ND (<0.25)		1.3
EPA 8270C SIM PCB Congeners	PCB183	µg/kg					0.18	J	0.57		0.94	0.81		ND (<0.27)	ND (<0.25)		0.65
EPA 8270C SIM PCB Congeners	PCB187	µg/kg					0.61		1.1		2.2	1.7		ND (<0.27)	ND (<0.25)		1.3
EPA 8270C SIM PCB Congeners	PCB189	µg/kg			130	<u>520</u>	ND (<0.28)		ND (<0.29)		ND (<0.28)	ND (<0.30)		ND (<0.27)	ND (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB194	µg/kg					ND (<0.28)		ND (<0.29)		ND (<0.28)	ND (<0.30)		ND (<0.27)	ND (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB201	µg/kg					ND (<0.28)		ND (<0.29)		ND (<0.28)	ND (<0.30)		ND (<0.27)	ND (<0.25)		ND (<0.31)
EPA 8270C SIM PCB Congeners	PCB206	µg/kg					ND (<0.28)		ND (<0.29)		3.1	ND (<0.30)		ND (<0.27)	ND (<0.25)		ND (<0.31)
	Total PCB Congeners	µg/kg	22.7	<u>180</u>			19.0		22.0		67.0	56.0		10.0	ND (<0.50)		31.0
Pyrethroids		1	r	1				-									/
EPA 8270D (M)/TQ/EI	Allethrin	µg/kg	·	•			ND (<0.69)		ND (<0.74)		ND (<0.71)	ND (<0.74)		ND (<0.67)	ND (<0.62)		ND (<0.78)
EPA 8270D (M)/TQ/EI	Bifenthrin	µg/kg	·	•	950,000	<u>12,000,000</u>	ND (<0.69)		0.53	J	1.9	1.6		ND (<0.67)	ND (<0.62)		0.97
EPA 8270D (M)/TQ/EI	Cyfluthrin	µg/kg	•				ND (<0.69)		ND (<0.74)		ND (<0.71)	ND (<0.74)		ND (<0.67)	ND (<0.62)		0.58
EPA 8270D (M)/TQ/EI	Cypermethrin	µg/kg	•				ND (<0.69)		ND (<0.74)		ND (<0.71)	0.41	J	ND (<0.67)	ND (<0.62)		ND (<0.78)
EPA 8270D (M)/TQ/EI	Deltamethrin/Tralomethrin	µg/kg	•	•	470,000	<u>6,200,000</u>	ND (<0.69)		ND (<0.74)		ND (<0.71)	ND (<0.74)		ND (<0.67)	ND (<0.62)		ND (<0.78)
EPA 8270D (M)/TQ/EI	Fenpropathrin	µg/kg	•		1,600,000	<u>21,000,000</u>	ND (<0.69)		ND (<0.74)		ND (<0.71)	ND (<0.74)		ND (<0.67)	ND (<0.62)		ND (<0.78)
EPA 8270D (M)/TQ/EI	Fenvalerate/Esfenvalerate	µg/kg			1,600,000	<u>21,000,000</u>	ND (<0.69)		ND (<0.74)		ND (<0.71)	ND (<0.74)		ND (<0.67)	ND (<0.62)		ND (<0.78)
EPA 8270D (M)/TQ/EI	Fluvalinate	µg/kg		-	630,000	8,200,000	ND (<0.69)		ND (<0.74)		ND (<0.71)	ND (<0.74)		ND (<0.67)	ND (<0.62)		ND (<0.78)
EPA 8270D (M)/TQ/EI	lambda-Cyhalothrin	µg/kg			63,000	820,000	ND (<0.69)		ND (<0.74)		ND (<0.71)	ND (<0.74)		ND (<0.67)	ND (<0.62)		ND (<0.78)
EPA 8270D (M)/TQ/EI	Permethrin (cis/trans)	µg/kg			3,200,000	41,000,000	ND (<1.4)		ND (<1.5)		1.1 J	1.4	J	ND (<1.3)	ND (<1.2)		0.8
EPA 8270D (M)/TQ/EI	Phenothrin	µg/kg			, ,		ND (<0.69)		ND (<0.74)		ND (<0.71)	ND (<0.74)	r.	ND (<0.67)	ND (<0.62)		ND (<0.78)
EPA 8270D (M)/TQ/EI	Resmethrin/Bioresmethrin	µg/kg			1,900,000	<u>25,000,000</u>	ND (<0.69)		ND (<0.74)		ND (<0.71)	ND (<0.74)		ND (<0.67)	ND (<0.62)	F1	ND (<0.78)
EPA 8270D (M)/TQ/EI	Tetramethrin	µg/kg					ND (<0.69)		ND (<0.74)		ND (<0.71)	ND (<0.74)		ND (<0.67)	ND (<0.62)		ND (<0.78)
<u> </u>	Total Pyrethroids	µg/kg	1				0.00	1	0.53	1	3.0	3.4	1	0.00	0.00		2.35

Table 4-1b. King Harbor Analytical Chemistry Results (Continued)

FINAL

Sampling and Analysis Plan Report Sediment Characterization Study In Support of Maintenance Dredging in King Harbor with Potential Outer or In-harbor Placement City of Redondo Beach Wood Project No. IR18166910 May 2020

Table 4-1b.	King Harbor Analytical Chemistry Results (Continued)
-------------	--

			Sedim	ent Qual	ity Guidelines				Dredging Areas			Placeme	nt Areas
Analytical Method	Compound Name	Units	ERL (dry wt.)	ERM (dry wt.)	Human RSLs <u>Residential</u> <u>Industrial</u>	OH-A-Con	nposite	OH-B-Composite	OH-C-Composite	OH-D-Composite	B3-Composite	OH-G-Composite	IH-Composite
Organotins													
Organotins by Krone et al.	Dibutyltin	µg/kg			19,000 <u>250,</u>	.000 ND (<4.2	()	4.7	ND(<4.3)	ND (<4.4)	4.3	ND (<3.8)	ND (<4.7)
Organotins by Krone et al.	Monobutyltin	µg/kg				ND (<4.2	2)	ND(<4.3)	ND(<4.3)	ND (<4.4)	ND (<3.9)	ND (<3.8)	ND (<4.7)
Organotins by Krone et al.	Tetrabutyltin	µg/kg				ND (<4.2	.)	ND(<4.3)	ND(<4.3)	ND (<4.4)	ND (<3.9)	ND (<3.8)	ND (<4.7)
Organotins by Krone et al.	Tributyltin	µg/kg			19,000 <u>250</u> ,	000 ND (<4.2	()	ND(<4.3)	ND(<4.3)	ND (<4.4)	ND (<3.9)	ND (<3.8)	ND (<4.7)
	Total Organotins	µg/kg				0.0		4.7	0.0	0.0	4.3	0.0	0.0
			•	•	Mean ERM quotier	nt (mERMq) 0.131		0.147	0.326	0.219	0.243	0.114	0.292

<u>Notes</u> Analytes are reported to the reporting limit provided by Eurofins Calscience.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Totals for TPH were provided by analytical laboratory. Totals for PAHs, DDTs, PCBs, Pyrethroids, and Organotins were hand-calculated.

All values reported in dry weight. Non-detects (ND) reported as ND (<reporting limit [RL]).

BOLD = value detected is above ERL

BOLD = value detected is above ERM

F1 = MS and/or MSD Recovery is outside acceptance limits.

ERL = Effects range-low

F2 = MS/MSD RPD exceeds control limits ERM = Effects range-median

p = The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported% - percent $\mu g/kg$ - milligram(s) per kilogram

PAH - Polycyclic Aromatic Hydrocarbon mg/kg - milligram(s) per kilogram

¹ RSL values for Nickel Soluble Salts PCB - Polychlorinated Biphenyl DDD - dichlorodiphenyldichloroethane TPH - Total Petroleum Hydrocarbons DDE - dichlorodiphenyldichloroethylene TRPH - Total Recoverable Petroleum Hydrocarbons DDT - dichlorodiphenyltrichloroet ND - non-detect

This page intentionally left blank.

5.0 CONCLUSIONS

The Project proposes to dredge approximately 62,000 cy of dredged material from King Harbor at the City of Redondo Beach. The dredged material is proposed for placement at a nearshore USACE designated placement site or at an in-harbor placement location (Figure 1-1b). This Study was performed to evaluate sediments within the proposed dredge areas and the two placement sites to determine compatibility. The purpose of this investigation is to provide the SC-DMMT with the sediment quality information needed to evaluate the suitability of the proposed dredged material for placement at the preferred nearshore and/or in-harbor sites and to make a disposal suitability determination.

5.1 Discussion of Results

The grain size of sediment for the proposed dredge areas met nearshore placement requirements with over 96 percent of the individual samples and 100 percent of the composite samples containing 80 percent or more sand. Sediment grain sizes for all five dredged material composites are similar to those at the outer harbor placement site which was comprised of 98.89 percent sand. Conversely, sediments at the in-harbor placement site only contained 52.46 percent sand and the proportion of fines (Total Silt and Clay) exceeded the 10 percent compatibility threshold for placement of the dredged materials at this site. The proportion of fines in the dredged material composites ranges from 4.34 to 10.1 percent while the proportion of fines at the in-harbor placement site is 47.5 percent.

It is possible that the in-harbor placement site sediments are finer because only the surficial sediments were collected (the top 5 centimeters) for analysis. Deeper sediments at this location may be coarser and more like those collected within the dredge areas; however, this is currently unknown. Furthermore, the depression that occurs at the in-harbor placement site may collect fine-grained sediments that settle in this area because of its greater depth compared to other locations within the harbor. Although the dredged material may not be physically compatible with surface sediments at the in-harbor placement site, the placement of the dredge materials within this depression may prevent further scouring and help maintain a more consistent bottom depth for the harbor in this area.

Sediment chemistry results for the dredge area samples showed very few analytes present at concentrations above ERL guideline values and only one analyte above an ERM guideline (chlordane). Analytes above ERL guideline values were 4,4'-DDE, total DDTs (all dredge area composites and the IH placement area), chlordane (in composites OH-A and OH-B), and total PCB congeners (in composites OH-C and OH-D, only). Pesticides, particularly DDTs, are ubiquitous throughout Southern California and their presence is not unexpected at this location given its proximity to the land. Furthermore, the concentration of both total DDTs and chlordane did not exceed toxicity reference values (TRV) published for San Francisco Bay (50 and 37 µg/kg, respectively). This value is the concentration at which sediments collected in San Francisco Bay are required to undergo bioaccumulation testing to determine if there may be effects to marine organisms and their associated food chain. There are currently no site-specific TRV available for

Southern California. In addition to pesticides, total PCB congeners were detected at concentrations approximately two times the ERL of 22.7 μ g/kg in the OH-C-Composite, OH-D-Composite, and the IH-Composite samples.

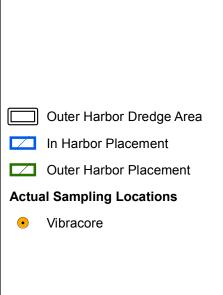
In general, the mERMq for the sediments does not appear to indicate that the dredged materials would cause adverse effects to the marine environment based on studies that have used this guideline as a screening tool in conjunction with other chemical-specific methods. These methods include a low occurrence of sediment quality guideline exceedances (i.e. less than 6 analytes detected above ERM) and one or more analytes detected at levels expected to be associated with biological effects (Phillips et al. 1998).

Overall none of the analytes exceed Human Health RSLs and are generally orders of magnitude below EPA RSLs for residential and industrial use for soils except for arsenic, which is common in Southern California and was found at concentrations less than the IH placement site (DTSC, 2020 and USEPA, 2019). This finding indicates that the dredged material is safe for human contact if it reaches the beach.

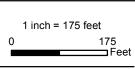

5.2 Conclusions

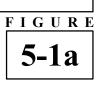
Overall the Study findings conclude:

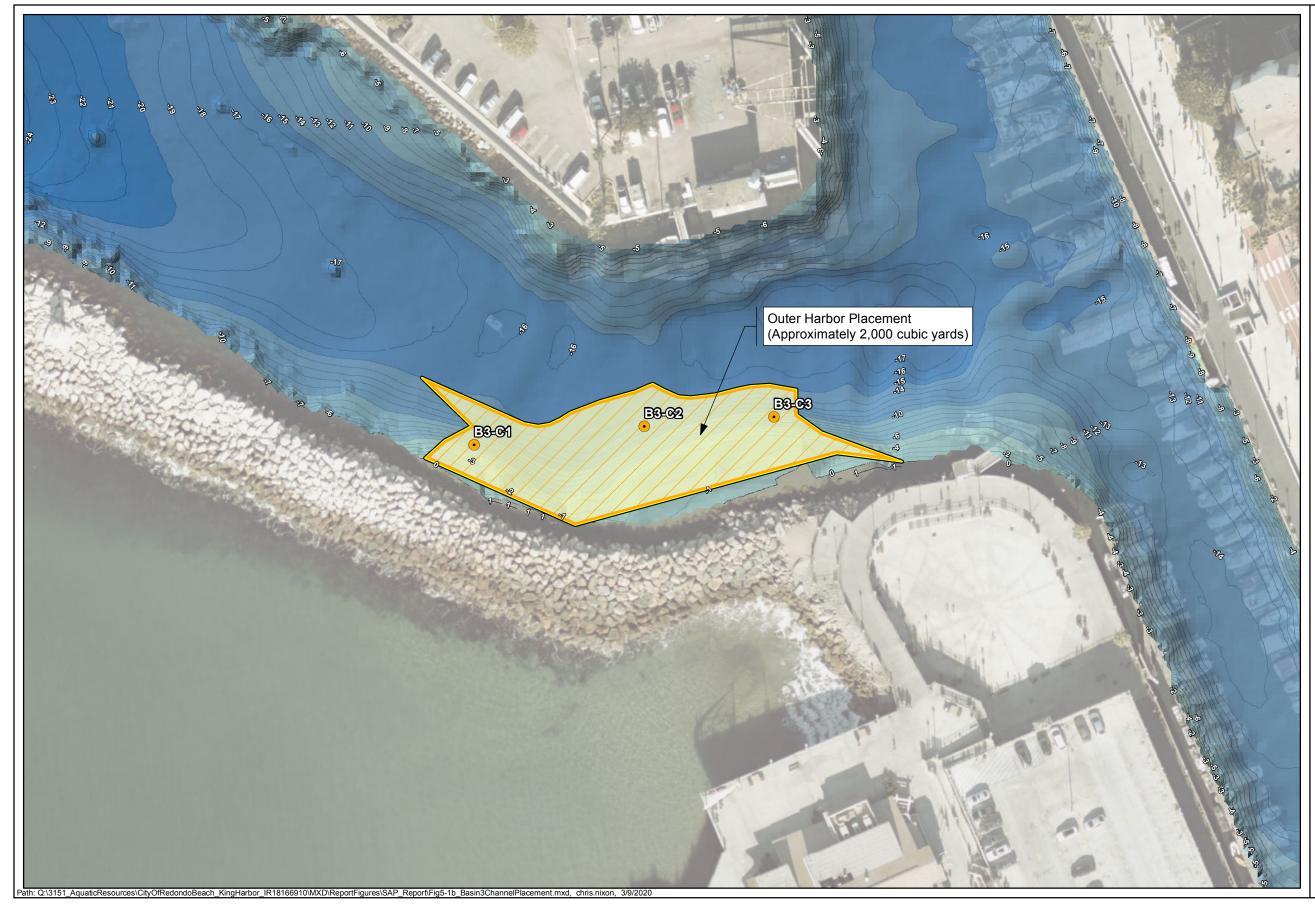
- All of the proposed dredged materials meet grain size compatibility requirements for nearshore placement (i.e. ≥80 percent or more sand).
- Sediments for the dredged materials met compatibility requirements for the outer harbor placement site, but not the in-harbor (i.e., a proportion of fines within 10 percent of each other).
- Sediment chemistry for the outer harbor placement site did not have any elevated levels of chemicals; however, similar to the dredged materials from composite areas OH-C and OH-D, sediment chemistry for the In-Harbor placement site did contain elevated levels of DDT's and PCB congeners. This may indicate that some of the sediments, particularly from composite areas OH-C and OH-D are more suitable for in-harbor placement.

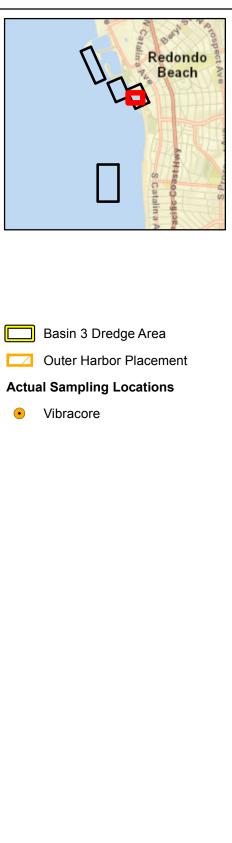

In conclusion, the City proposes to dredge all 60,000 cy of sediments along the breakwater of King Harbor to a depth of -18 feet MLLW plus a 2-foot OD allowance and 2,000 cy of sediment within Basin 3 to a depth of -15 feet MLLW plus a 2-foot OD allowance. Proposed placement for the dredged materials up to approximately 29,000 cy of sediment with the 2-foot OD allowance within the In-Harbor Placement site (comprised of sediment from Composite C and D) and approximately 33,000 cy with the 2-foot OD allowance (comprised of all dredged sediment from OH-A, OH-B, and B3) within the USACE's outer harbor placement site (Figures 5.1a and b).⁴ The final placement location for the dredged materials will be determined in consultation with the SC-DMMT.

⁴ Dredge volumes are approximations and may be refined after dredge plans are confirmed.

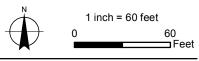

wood.


Proposed Placement Options for Outer Harbor Dredged Material King Harbor Maintenance Dredging Redondo Beach, California


Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community



This page intentionally left blank.



Proposed Placement Options for Basin 3 Dredged Material King Harbor Maintenance Dredging Redondo Beach, California

Service Layer Credits: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User Community

This page intentionally left blank.

5.3 Summary of SC-DMMT Meeting March 25, 2020

The Final SAP Report for the Study was presented to the SC-DMMT on March 25, 2020. In response to the presentation of results, several questions were raised by members of the SC-DMMT. The questions are listed and addressed in the Response to Comments provided as Table 5-1. In addition, appropriate sections of the Final SAP Report were updated to incorporate SC-DMMT comments including: Introduction, Site Description, and Site History. Updates to Site History include information for the Outer Harbor placement/borrow site and historical considerations of suitability for nearshore placement as opposed to direct beach nourishment. Overall, the SAP Report presents the following conclusions for the Project in response to SC-DMMT comments.

- The proposed placement sites were considered and approved by the SC-DMMT in the final SAP dated August 2019. The sites were limited to the In-Harbor and Outer Harbor Placement Sites. No additional sites, including direct beach placement, were requested or proposed by the SC-DMMT at this time and therefore were not considered by the City.
- 2) The offshore borrow site (Outer Harbor Placement site) has been researched and has been used for dredging projects and beach replenishment projects performed by the County and USACE since 1968. Additional information related to the history of the borrow site is included in this SAP Report and can also be reviewed in the *Final Report Coast of California Storm and Tidal Waves Study, Los Angeles Region* prepared by Noble, for the USACE Los Angeles District in August 2016 and the County's 2017 *Coastal Regional Sediment Management Plan Los Angeles County* (Noble et al. 2017) which was provided to the SC-DMMT following review of the SAP in August, 2019.
- 3) In response to concerns regarding biological impacts from placement of the dredged materials at the borrow site, reference should be made to the biological report included as Appendix A of this SAP Report that shows no impact to sensitive biological species within the Outer Harbor Placement area and no broom tail seabass observed within the borrow site footprint. Furthermore, reference should be made to recent studies of juvenile seabass that show habitat to be primarily at the head of the Redondo Submarine Canyon, approximately 0.75 miles away from the proposed Outer Harbor placement site (Allen et al., 2019; Benseman and Allen, 2018).
- 4) Additional considerations of impacts to biological resources shall be considered in the preparation of a debris management plan for dredging and placement operations as part of the Los Angeles County Regional Water Quality Control Board Water Quality Certification. Special consideration will be made to the removal of trash or other potential debris that could affect the nearby Redondo Submarine Canyon.
- 5) It has been noted by previous dredging events that intermittent placement of small quantities of sand on South Redondo Beach (2004-2005) have been less successful then

larger direct beach nourishment projects (1968-1969). Furthermore, the current width of South Redondo Beach is adequate to provide shoreline protection to nearby structures.

Overall direct beach placement was not proposed for this Project for the following reasons:

- Sand to be dredged from King Harbor may contain stone intermixed with the shoal material, as discovered during the 2004-2005 King Harbor project referenced in Section 2.1. It is recommended that the potential for stone to be present in the proposed dredge material be considered when preparing the debris management plan and dredge design for the current project. Furthermore, sand placement in the Outer Harbor placement area (i.e. the borrow site), would allow for sediment to be more effectively screened for debris before direct beach placement occurs.
- 2) There is no immediate need for sand placement at either the Redondo Canyon Reach located to the north of the Topaz Groin or the South Redondo Beach Reach between south of the Topaz Groin and Malaga Cove (Figure 1-1b). Although the Redondo Canyon Reach is almost always in need of nourishment, it is best to replenish this beach with a large nourishment (>80,000 cy). Furthermore, South Redondo Beach Reach has been extensively studied and is stable; therefore, no placement of sand will be needed at this location in the near future (Noble, 2016a).
- 3) If direct beach placement were employed, it is possible that sediment or other debris generated by the project could be directly lost to the nearby Redondo Submarine Canyon. Specific best management practices will need to be implemented to ensure minimal to no impact to this area during placement. Utilizing the Outer Harbor placement/borrow site allows for better screening of dredged materials to prevent this from occurring.

In summary, there is an immediate need to dredge King Harbor, but the quantity is not great enough to lead to a successful beach nourishment project at the beaches nearby. In addition, the borrow site is located close to King Harbor and has been previously approved by both the Corps and County for this purpose. By placing King Harbor dredged materials within the borrow site, it reserves this material for a larger beach nourishment project that would likely be more successful than placement of smaller quantities of material in several episodic events. It is also likely that there would be a large cost savings and less interruption to the public if beach placement is performed during a singular episode rather than in smaller projects. Furthermore, beach operation in this part of the Santa Monica Bay is within the jurisdiction of LA County, not the City of Redondo Beach, and so any beach nourishment event would be subject to the approval of LA County and in coordination with their long-term maintenance objectives. Those objectives include maintaining a wide and stabilized sandy beach and the identification and reservation of offshore sand sources that may be used

to maintain public beaches in the Santa Monica Bay (Noble, 2016b).

 Table 5-1. Response to Comments – Southern California Dredged Material Management Team Meeting March 25, 2020

			DMMP MEETING Wednesday, 25 March 2020 Corps of Engineers - Los Angeles District Teleconference – 10:00 AM
			ents – King Harbor Maintenance Dredging Project City of Redondo Beach orps File No. SPL-2019-00541-VN
Attendees:	Emily Duncan (Regional Marc Brown (Regional W Joseph (Joe) Ryan (U.S. Lawrence Smith (U.S. Arn Stephen Estes (U.S. Arn Vanessa Navarro (U.S. A Loni Adams (California E	edondo Beach) f Redondo Beach) l Protection Agency) d Group PLC) ood Group PLC) ood Group PLC) u Wood Group PLC) ultants) onal Water Quality Control Board, Region 3) Water Quality Control Board, Region 4) /ater Quality Control Board, Region 8) . Army Corps of Engineers, Engineering) my Corps of Engineers, Engineering) my Corps of Engineers, Regulatory) Army Corps of Engineers, Regulatory) Department of Fish and Wildlife) al Oceanic and Atmospheric Administration)	
Comment Number	Commenter, Affiliation	Comment	Response
1	Allan Ota, USEPA	Concerns about PCB concentrations in Composites C & D	Dredged material with elevated PCBs will be placed in the IH site, because sediments at this le
2	Allan Ota, USEPA	How is the "In-Harbor" site considered "beneficial reuse?" Is there a biological beneficial reuse?	It is expected that by bringing the harbor bottom up to a similar grade to the surrounding area, potentially be a fine-sediment sink for contaminants. By covering this area with sandy material elevated contaminants will be capped and future sediments will be flushed better within the ha
3	Allan Ota, USEPA	For the OH Placement site, the beneficial reuse is beach replenishment, correct? It seems like the material is actually just going to sit offshore.	According to the Los Angeles County Regional Sediment Management Plan (CRSM; Noble et Study, Los Angeles Region (Tide and Wave Study; Noble, 2016) The Outer Harbor (OH) Place 1968. This borrow pit was used to replenish the South Redondo Beach Reach with approxima placement by the USACE in 2000 and 2012 to place dredged material from Marina del Rey pro-
4	(unknown)	If beach placement was the ultimate purpose, why not just place the material directly on the beach?	An extensive review of the Los Angeles County and USACE approved CRSM and the USACE grade of the beach only allow for the area to maintain a certain width. The current beach width protection; therefore, on beach placement is not needed at this time. Overall it appears that it is sand quantities are available for beach placement and a more extensive widening project can

FINAL

is location contain similar concentrations.

ea, circulation patterns will be increased. In addition, this area seems to rial, it is expected that fine sediments currently at this site that contain harbor.

nent" or "nearshore placement" in the updated draft SAP Report.

et al. 2017) and the USACE Coast of California Storm and Tidal Waves accement site acts as a borrow pit that was created by the USACE in 1967nately 2 million cubic yards of sediment. This site has also been used for projects.

CE Tide and Wave Study shows that the littoral circulation patterns and dth of approximately 130 feet maintains needed shoreline stabilization and it is more judicious for the material to be placed in the borrow pit until larger an be performed when it is needed, similar to historical events.

			DMMP MEETING Wednesday, 25 March 2020 orps of Engineers - Los Angeles District Teleconference – 10:00 AM
		· · · · · ·	ents – King Harbor Maintenance Dredging Project City of Redondo Beach rps File No. SPL-2019-00541-VN
5	Bryant Chesney, NOAA	The bio concern I have is that we are moving a lot of sediment back and forth in a sensitive area, with a lot of unique features. You really need to justify using this site, given the sensitivity of the area.	The closest edge of the Redondo Submarine Canyon (now indicated on Figure 1-1b of the Rev borrow site. The Redondo Submarine Canyon is part of the Redondo Canyon Reach located be (OH) placement site (i.e. the borrow site) is within the South Redondo Beach Reach located be area performed for the USACE's Tide and Wave Study and the CRSM indicate that sediment a would not migrate into the canyon, especially given the coarse grain size (> 90 percent sand). I placement in the borrow site would enable dredged materials to be screened prior to being place management plan would contain specific measures to prevent any trash or other objects of con vicinity of the project area. See more response to this comment under Response to Comment 6
6	Allan Ota, USEPA	The history of the borrow pit needs to be included in the report.	An updated history of the borrow site has been included in the revised Draft SAP Report and ca This area, as well as the surrounding coastline from Malaga Cove to Zuma Beach have been st
7	Loni Adams, CDFW	Just north of that OH site there is a nursery ground. I would be careful to make sure giant sea bass is not expanding down south into that area. As far as the outer placement site, associates surveyed that area and found that broomtail sea bass use that area quite often. Some studies have shown that they may be residents in that area, and not just migrating in and	A biological survey performed by Chambers Group to support this project in November 2018 cle to sensitive species in this area. The biological survey report is included as Appendix A to the D and the location of broomtail sea bass shows these two species appear to exist closer to the he miles to the North of the borrow site (Allen et al. 2018; Benseman and Allen, 2018).
		out.	Overall, investigation of recent information related to seabass has shown that the essential fish of the placement area and would not be affected by dredging or placement operations. However, prepared for dredging operations that outlines precautions taken to prevent impact to the juvenic capture and prevent any potential project debris from falling into the canyon or sensitive habitat
8	Carol Roberts, USFWS	We are in a perpetual search for good beach sand. It would be a shame to put good sand in a place where it might not ever make it to the beach. Why not put it in the surf zone so that we can be sure it will make it to the beach?	Beach placement was not considered for this project because of the existence of the borrow sit immediate need for beach placement at South Redondo Beach. By placing King Harbor dredge screened for debris and reserved for a larger beach nourishment project that would likely be more pisodic events. It is also likely that there would be a large cost savings to performing beach placement placement placement at the placement of the borrow site of the
9	Lawrence Smith, USACE	Was there any consideration made for beach placement during the prep for the sampling plan?	Furthermore, beach placement is within LA County's jurisdiction, not the City of Redondo Beach with LA County. Unfortunately, there is an immediate need to dredge King Harbor but not an im
10	Larry Simone, CCC	If we've got clean, beach-compatible sand, it ought to go to the beach or near shore. We would support greatly a re-evaluation of this placement project to put it on the beach or near shore. We think that ought to be reexamined by the applicants.	

Table 5-1. Response to Comments – Southern California Dredged Material Management Team Meeting March 25, 2020 (Continued)

References:

Allen L. G., S. A. Benseman, and M. Couffer. 2019. Baby Giants are found at the heads of submarine canyons. Ecology 100(1):e02496. 10.1002/ecy.2496.

Benseman, S.A. and L.G. Allen. 2018. Distribution and Recruitment of Young-of-the-Year Giant Sea Bass, Stereolepis gigas, off Southern California. Copeia 106:312–320.

Noble Consultants, Inc. (Noble), 2016. Final Report Coast of California Storm and Tidal Waves Study, Los Angeles Region. Prepared for USACE Los Angeles District. August 2016.

Noble, Larry Paul and Associates, and United States Army Corps of Engineers (USACE) Los Angeles District California Coastal Sediment Management Workgroup. 2017. Coastal Regional Sediment Management Plan Los Angeles County Coast. June 2017.

FINAI

Revised Draft SAP Report) is approximately 0.3 miles from the center of the between King Harbor and north of the Topaz Groin, while the outer harbor between Malaga Cove and south of the Topaz Groin. Research of this at this site is stable and proposed dredged materials from King Harbor). In addition, because of lessons learned during historical dredging events, blaced on the beach using a debris management plan. The debris concern from entering the canyon or affecting sensitive species within the nt 6.

I can be found in the 2017 CRSM and 2016 USACE Tide and Wave Study. studied by the USACE since the early 1900s.

cleared the site for dredged material placement with a finding of no impact e Draft SAP Report. Further research of the release of the giant seabass head of the Redondo Submarine Canyon located approximately 0.75

ish habitat mentioned during the last DMMT meeting is located to the north ever, it is recommended that a dredged material management plan be enile seabass as well as provide a strict debris management plan to itat areas.

site, the nearby Redondo Submarine Canyon, and the fact that there is no dged materials within the borrow site, it allows for dredged materials to be more successful then placement of smaller quantities of material in several placement during a singular episode rather than in smaller projects. each, and so beach placement would need to be performed in consultation immediate need to place materials on the beach.

5.4 Summary of SC-DMMT Meeting May 27, 2020

The Project Response to Comments (Table 5-1) was presented to the SC-DMMT at the meeting held May 27, 2020. The outcome of this meeting led to the following agency approvals for this report:

- USEPA, Alan Ota Acceptable, given the relatively small volume going to the outer site, even though the median grain size seems smaller. As long as resource agencies do not have big issues with it, management practices will be implemented to keep the material further from the head of the canyon.
- California Coastal Commission (CCC), Larry Simon Abstain, the material is suitable physically and chemically. I will leave it to my commission colleagues to work with city to decide what is best for disposal options.
- USACE, Larry Smith- It will get worked out during the permit process (in regards to Larry Simon's comment).
- Regional Water Quality Control Board (RWQCB) Region 4, Emily Duncan Agree with Alan's comments and also Loni's.
- United States Fish and Wildlife Service (USFWS), Carol Roberts No objections to the plan.

Agency correspondence (SC-DMMT meeting minutes) are included in Appendix E of this report.

FINAL

FINAL Sampling and Analysis Plan Report Sediment Characterization Study In Support of Maintenance Dredging in King Harbor with Potential Outer or In-harbor Placement City of Redondo Beach Wood Project No. IR18166910 May 2020

This page intentionally left blank.

6.0 **REFERENCES**

- Allen L. G., S. A. Benseman, and M. Couffer. 2019. Baby Giants are found at the heads of submarine canyons. Ecology 100(1):e02496. 10.1002/ecy.2496.
- American Public Health Association, American Water Works Association, and Water Environment Federation. 1995. Standard Methods for the Examination of Water and Wastewater. 19th Edition. Edited by A.D. Eaton, L.S. Clesceri, and A.E. Greenberg. Washington, DC.
- ASTM International. D4464. 2015. Standard Method for Particle Size Distribution of Catalytic Material by Laser Light Scattering. ASTM Designation D4464-15.
- Bay, S., D.J. Greenstein, J.A. Ranasinghe, D.W. Diehl, and A.E. Fetscher. 2014. Sediment Quality Assessment Technical Support Manual. Southern California Coastal Water Research Project (SCCWRP) Technical Report 777. January.
- Benseman, S.A. and L.G. Allen. 2018. Distribution and Recruitment of Young-of-the-Year Giant Sea Bass, *Stereolepis gigas*, off Southern California. Copeia 106:312–320.
- Buchman, M.F. 2008. NOAA Screening Quick Reference Tables. NOAA OR&R Report 08-1. Seattle Washington: Office of Response and Restoration Division, National Oceanic and Atmospheric Administration.
- Code of Federal Regulations (CFR), Section 404(b)(1) Guidelines for Specification of Disposal Sites for Dredged or Fill Material, title 40, sec. 230.
- CFR, Section 404(b)(1) Corps of Engineers Permit Regulations, title 33, sec. 320-330.
- Department of Toxics Substances Control, 2020. Polychlorinated Biphenyl (PCB) Evaluation Quick Reference Guide. State of California. Accessed at <<u>https://dtsc.ca.gov/brownfields/polychlorinated-biphenyl-pcb-evaluation-quick-reference-guide/</u>> Accessed on January 8, 2020.
- Krone, C.A., D.W. Brown, D.G. Burrows, R.G. Bogar, S.L. Chan, U. Varanasi. 1989. A Method for Analysis of Butyltin Species and Measurement of Butyltins in Sediment and English Sole Liver from Puget Sound. *Marine Environmental Research* 27: 1-18.
- Lin, D. and J.A. Davis. 2018. Support for Sediment Bioaccumulation Evaluation: Toxicity Reference Values for San Francisco Bay. San Francisco Estuary Institute, Richmond, CA. SFEI Contribution #916.
- Los Angeles Regional Water Quality Control Board (Regional Board). 2004. Waste Discharge Requirements for City of Redondo Beach (King Harbor Maintenance Dredging) File Number 03-068. Order Number R4-2004-0092. May 4, 2004.
- Moffat & Nichol and Kinnetic Laboratories, Inc. 2011. Santa Cruz Harbor Dredging & Disposal Options Study. Prepared for Santa Cruz Port District. July.

- National Oceanic and Atmospheric Administration (NOAA). 1993. Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects, 1984–1992, Volume IV, Comprehensive Descriptions of Trace Organic Analytical Methods. July.
- Noble Consultants, Inc. (Noble), 2016a. Final Report Coast of California Storm and Tidal Waves Study, Los Angeles Region. Prepared for USACE Los Angeles District. August 2016.
- Noble Consultants, Inc. 2016b. Final Report Los Angeles County Public Beach Facilities Sea Level Rise Vulnerability Assessment. April 2016
- Noble, Larry Paul and Associates, and United States Army Corps of Engineers (USACE) Los Angeles District California Coastal Sediment Management Workgroup. 2017. Coastal Regional Sediment Management Plan Los Angeles County Coast. June 2017.
- Phillips, B., B. Anderson, J. Hunt, J. Newman, R. Tjeerdema, C.J. Wilson, E.R. Long, M. Stephenson, M. Phuckett, R. Fairey, J. Oakden, S. Dawson, and H. Smith. Sediment Chemistry, Toxicity, and Benthic Community Conditions in Selected Water Bodies of the Santa Ana Region, Final Report. California State Water Resources Control Board, National Oceanographic and Atmospheric Administration, Regional Water Quality Control Board, California Department of Fish and Game, University of California Santa Cruise, and San Jose State University. August, 1998.
- Southern California Coastal Water Research Project (SCCWRP). 2013. Contaminant Impact Assessment (CIA) Field Operations Manual. Southern California Bight 2013 Regional Marine Monitoring Survey. July.
- United States Army Corps of Engineers (USACE). 2012. Safety and Health Requirements Manual. EM 385-1-1. December.
- United States Environmental Protection Agency (USEPA). 1986–2007. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.* Revision 3 (November 1986), as amended by Updates I (July 1992), II (September 1994), IIA (August 1993), IIB (January 95), III (December 96), and VI (February 07). SW-846.
- USEPA. 1995. QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations (Chemical Evaluations). USEPA 832-B-95-001.
- USEPA. 2001. *Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual*. USEPA-823-B-01-002. October.
- USEPA. 2019. Regional Screening Levels, updated November 2019. Accessed at <<u>https://www.epa.gov/risk/regional-screening-levels-rsls</u>>, <<u>https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables</u>> and <<u>https://semspub.epa.gov/work/HQ/199626.pdf</u>> Accessed on January 8, 2020.
- USEPA/USACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S: Inland Testing Manual. EPA 823-B-98-004. February.

Wood Environment and Infrastructure Solutions. 2019. Sampling and Analysis Plan Sediment Characterization Study in Support of Maintenance Dredging in King Harbor with Potential Outer or In-harbor Placement.

FINAL

FINAL Sampling and Analysis Plan Report Sediment Characterization Study In Support of Maintenance Dredging in King Harbor with Potential Outer or In-harbor Placement City of Redondo Beach Wood Project No. IR18166910 May 2020

This page intentionally left blank.

7.0 ACRONYMS AND ABBREVIATIONS

α	alpha
β	beta
Δ	delta
¥	gamma
>	greater than
<	less than
2	equal to or greater than
≤	equal to or less than
#	number
%	percent
µg/kg	micrograms per kilogram
Aquatic Blue	Aquatic Blue Environmental
ASTM	ASTM International
B3	Basin 3
BHC	benzene hexachloride
С	core sample
C6-C44	carbon chain
CFR	Code of Federal Regulations
City	City of Redondo Beach
cm	centimeter(s)
CWA	Clean Water Act
су	cubic yards
D	sample depth interval (U, M, L)
DCPA	Dacthal
DDD	dichlorodiphenyldichloroethane
DDE	dichlorodiphenyldichloroethylene
dd/dddºmm.mmm	degrees decimal minutes
DDT	dichlorodiphenyltrichloroethane
DGPS	Differential Global Positioning System
DoD-ELAP	United States Department of Defense Environmental Laboratory Accreditation Program
DTSC	Department of Toxic Substance Control

Dup.	Duplicate
ERL	Effects Range-Low
ERM	Effects Range-Median
ERMq	Effects Range-Median quotient
Eurofins Calscience	Eurofins Calscience Environmental Laboratories, Inc.
g	grams
G	grab sample
GC	gas chromatography
grab sampler	Van Veen grab sampler
ID	identification
IH	In-harbor
ITM	Inland Testing Manual (1998)
km	kilometers
L	lower, project design depth to the 2-foot overdredge allowance depth
LL	location
m	meter(s)
m ²	square meter(s)
М	middle; 2 feet below the sediment-water interface to project design depth
(M)	modified
MB	method blank
MDL	method detection limit
mERMq	mean Effects Range-Median quotient
mg/kg	milligrams per kilogram
MLLW	mean lower low water
mm	millimeter
m/sec	meter(s) per second
MS	mass spectrometry
MS	matrix spike
MSD	matrix spike duplicate
N/A	not applicable
ND	Non-detect
NELAP	National Environmental Laboratory Accreditation Program
Noble	Noble Consultants-GEC, Inc.

NH ₃	ammonia
NOAA	National Oceanic and Atmospheric Administration
OD	overdredge
ОН	Outer Harbor
РАН	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl
ppb	parts per billion
ppm	parts per million
Project	City of Redondo Beach Maintenance Dredging Project at King Harbor with Potential Nearshore or In-Bay Placement
QA	quality assurance
QC	quality control
Regional Board	Los Angeles Regional Water Quality Control Board
RL	reporting limit
RPD	relative percent difference
RSL	Human Regional Screening Levels
SAP	Sampling and Analysis Plan
SAPr	Sampling and Analysis Plan Report
SC-DMMT	Southern California Dredged Material Management Team
SIM	selective ion monitoring
SM	standard method
SixSci	Six Scientific Service
Study	Project sediment characterization study
SWI	Sediment-water interface
TOC	total organic carbon
ТРН	total petroleum hydrocarbons
TRPH	total recoverable petroleum hydrocarbons
TRV	toxicity reference values
U	upper; 0-2 feet below the sediment-water interface
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
Wood	Wood Environment & Infrastructure Solutions, Inc.

FINAL

FINAL Sampling and Analysis Plan Report Sediment Characterization Study In Support of Maintenance Dredging in King Harbor with Potential Outer or In-harbor Placement City of Redondo Beach Wood Project No. IR18166910 May 2020

This page intentionally left blank.

201 Alameda Del Prado, Suite 301 Novato, CA 94949 (415) 884-0727 Fax (415) 884-0735 Ronald M. Noble, P.E., President DESIGN

Attachment D

Biological Resources Report

by Chambers Group, Inc.

BIOLOGICAL RESOURCES REPORT FOR THE KING HARBOR MAINTENANCE DREDGING PROJECT REDONDO BEACH, CALIFORNIA

Prepared for:

CITY OF REDONDO BEACH 415 Diamond Street Redondo Beach, CA 90277

and

Noble Consultants – G.E.C., Inc. 2201 Dupont Dr # 830 Irvine, CA 92612

Prepared by:

CHAMBERS GROUP, INC.

5 Hutton Centre Drive, Suite 750 Santa Ana, California 92707 (949) 261-5414

November 2018

TABLE OF CONTENTS

Page

	1.0 – INTRODUCTION	
1.1	PROJECT LOCATION	2
Section	2.0 – METHODS	
2.1		
2.2	UNDERWATER SURVEYS	5
	3.0 – RESULTS	
-	SENSITIVE SPECIES	-
3.2	FISH AND ESSENTIAL FISH HABITAT	7
Section	4.0 – CONCLUSIONS	
Section	5.0 – REFERENCES	13
Jection	J.V - KLI LIKINCEJ	

LIST OF FIGURES

Page

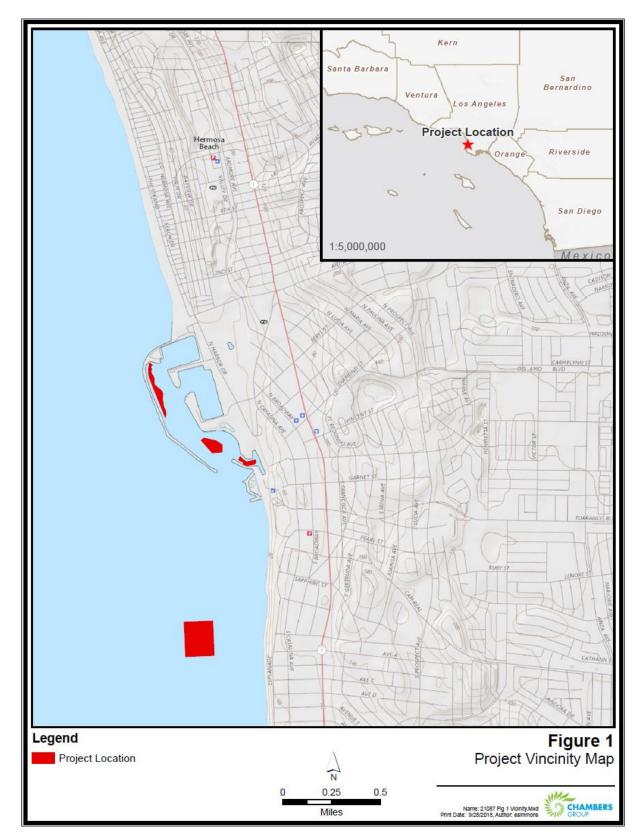
Figure 1: Project Vicinity	3
Figure 2: Project Location	4
Figure 3: CNDDB Documented Occurrences	9
Figure 4: USFWS Critical Habitat and USFWS Documented Occurrences	. 10
Figure 5: Essential Fish Habitat	.11

APPENDICES

APPENDIX A – RESULTS FROM CNDDB, USFWS, AND NOAA FISHERIES DATABASES APPENDIX B – EELGRASS AND CAULERPA UNDERWATER SURVEY REPORT

SECTION 1.0 – INTRODUCTION

Chambers Group was retained by Noble Consultants – G.E.C., Inc., to conduct a literature review as well as eelgrass (*Zostera marina*) and Caulerpa (*Caulerpa taxifolia*) underwater surveys for the King Harbor Maintenance Dredging Project (Project) in Redondo Beach (Figure 1) to document the existing biological resources and to assess the harbor and nearshore habitats present for their potential to support sensitive species.


A shoal area has developed in two general areas within the harbor: Outer Harbor and Basin 3 Channel, including the alternative Basin 3 site (Figure 2). The City of Redondo Beach proposes to conduct maintenance dredging by removing sediment deposits from these shoal areas. Sediment removed from the shoal areas may be disposed of in a deeper area of the harbor or offshore downcoast of the harbor (Figure 2).

The purpose of this report is to describe the biological resources and habitats in the vicinity of the shoal and in-water disposal areas. Section 2 describes the methods used for this analysis. Section 3 describes habitats and biological resources. Section 4 is the conclusions about potential effects of the rock removal project on habitats and resources. Section 5 is the literature consulted for this analysis.

1.1 PROJECT LOCATION

King Harbor is a small boat harbor located at the southern end of Santa Monica Bay in Redondo Beach, Los Angeles County, California (Figure 1). Within the harbor, four marinas provide approximately 1,400 slips for private boats. The Project is located within the *Redondo Beach* U.S. Geological Survey (USGS) 7.5-minute topographic quadrangle in the Special Survey Section San Pedro-Dominguez. The survey area consisted of the four distinct project areas, specifically the Outer Harbor dredge area, Basin 3 Channel and alternative site, the Harbor Placement Site, and the Offshore Placement Area (Figure 2).

Figure 1: Project Vicinity

Figure 2: Project Location

SECTION 2.0 – METHODS

The analysis in this report is based on a literature review and an underwater reconnaissance survey of the shoal and disposal areas. The literature review included reports about marine resources in King Harbor and information on sensitive marine species that occur in the vicinity of the harbor.

2.1 LITERATURE REVIEW

Prior to conducting the biological reconnaissance survey, Chambers Group biologists reviewed existing available literature for the Project site. Chambers Group conducted database searches to determine which species, both terrestrial and marine, are known to occur within the Project vicinity. The most recent records of the California Natural Diversity Database (CNDDB, California Department of Fish and Wildlife [CDFW] 2018) and records of Critical Habitat and Species Occurrences through the Information for Planning and Consultation (United States Fish and Wildlife Service [USFWS]) were reviewed for the quadrangles containing and surrounding the Project site, which included *Redondo Beach, Venice, Inglewood, Torrance, San Pedro,* and *Redondo Beach OE S* California USGS 7.5-minute quadrangles. These databases contain records of reported occurrences of federally and state listed endangered or threatened or proposed endangered or threatened species, California Species of Special Concern (SSC), and otherwise sensitive species or habitats that may occur within or in the immediate vicinity of the Project site. A list of sensitive species potentially occurring within the Project site was developed from the database searches and the potential for occurrence of sensitive plant and wildlife species, including species listed as threatened or endangered, and sensitive habitats was assessed.

2.2 UNDERWATER SURVEYS

The survey was conducted according to the California Eelgrass Mitigation Policy (National Marine Fisheries Service [NMFS] 2014) and the NMFS Caulerpa Survey Protocol, Version 4, 2008. The methods utilized for the survey included scuba diver transects and GPS (Global Positioning System) mapping conducted by certified marine biologists employing agency-approved transect techniques for conducting eelgrass and invasive algae surveys.

Diver surveys were conducted by biologists using in-water GPS units to map any Caulerpa and eelgrass patches encountered in the study areas. Biologist-divers swam along underwater transects while a topside boat operator in the research vessel *Bula* remained at anchor nearby to monitor other vessel traffic and render assistance to the divers. Two divers swam side by side at a distance dependent on the given visibility at that time. Scuba diver transects were conducted at intervals sufficient to assure at least 50 percent coverage of the bottom.

Field conditions noted during the survey were recorded during the diver surveys at each of the study sites and included characteristic marine flora and fauna, the presence or absence of Caulerpa and eelgrass, depth ranges, and bottom physical attributes. Underwater still photographs and video were taken at each of the study sites. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the NOAA tidal survey station at the entrance of Los Angeles Harbor.

SECTION 3.0 – RESULTS

The pre-construction field survey using scuba diver transects was conducted on September 22, 2018, by Anghera Environmental and Ecomarine Consulting staff. Field personnel included Mr. Mike Anghera (Senior Marine Biologist-Diver), Dr. Kimo Morris (Senior Marine Biologist-Diver), and Mr. Clint Nelson (Senior Marine Biologist-Diver-Boat Operator).

3.1 SENSITIVE SPECIES

The CNDDB search resulted in a list of 20 sensitive wildlife species known to occur on or within the Redondo Beach USGS 7.5 minute quads containing the Project site (Figure 3). Of these 20 species, 5 are federally and/or state listed as endangered or threatened (Appendix A). Four of these five species were identified by IPaC as species that potentially may be affected by activities in this location: Pacific pocket mouse (*Perognathus longimembris pacificus*), coastal California gnatcatcher (*Polioptila californica californica*), western snowy plover, and El Segundo blue butterfly (*Euphilotes battoides allyni*). After a literature review and the assessment of the various habitat types on the Project site and within the surrounding area, all but one sensitive wildlife species, western snowy plover (foraging), were considered **absent** from the Project site due to lack of suitable habitat. The USFWS IPaC identified no critical habitat within the Project Area, either at the harbor or offshore disposal site (Figure 4). Critical habitat for western snowy plover (*Charadrius nivosus*) does occur upcoast of the Project boundary at Hermosa Beach, but Proposed Project activities would not directly or indirectly affect snowy plover.

Invertebrates

The federally endangered black abalone (*Haliotis cracherodii*) may occur in the vicinity of King Harbor. Black abalone is a marine snail that occurs in rocky habitats from the intertidal to about 25 foot water depth (NOAA Fisheries 2011). This species was once common along California shores but populations have been decimated by overfishing and a wasting disease. The Palos Verdes peninsula, south of King Harbor, has been designated as Critical Habitat for black abalone. Black abalone would not be expected in the shoal area or the potential in-water disposal area because of a lack of appropriate rocky habitat.

Birds

King Harbor supports a variety of water-associated birds. Examples of water-associated bird species that may be observed at King Harbor include gulls (*Larus* spp.), California brown pelican (*Pelecanus occidentalis californicus*), and cormorants (*Phalacrocorax* spp.). Appendix A lists bird species identified in the IPaC assessment.

The federally threatened western snowy plover is a small shorebird that breeds on sand beaches, mudflats, and salt flats. Snowy plovers do not breed at King Harbor and King Harbor is not listed as Critical Habitat for snowy plovers (USFWS 2012). As mentioned above, Hermosa State Beach, approximately 0.25 miles north of King Harbor, is listed as Critical Habitat, because it supports a wintering flock of about 25 snowy plovers. The closest snowy plover breeding areas to King Harbor are Ormond Beach in Ventura County and Bolsa Chica in Orange County. There is a slight chance that wintering snowy plovers could forage on the shoal when it is exposed at low tide. However, because most of the shoal area is normally covered with water, the chances of snowy plovers using the shoal area are remote.

In addition, the state and federally endangered California least tern (*Sterna antillarum browni*) may occur in the vicinity of King Harbor. The state and federally endangered California least tern nests in unvegetated sandy areas on the ocean shore or in bays and lagoons between April and August. After the breeding season, they migrate south to their wintering grounds. California least terns do not breed at King Harbor. The nearest least tern breeding areas to King Harbor are Venice Beach, approximately 9 miles to the north, and Los Angeles Harbor, approximately 12 miles to the southeast (Marschalek 2012). King Harbor is not close enough to these colonies for least terns to forage there during nesting. Least terns may occasionally forage in King Harbor during migration.

Sea Turtles

Four species of sea turtles listed by the federal government have **no to low** potential to occur in Project area waters at the offshore disposal site. These species are the federally listed as threatened loggerhead sea turtle (*Caretta caretta*), the federally listed as threatened Pacific Ridley sea turtle (*Lepidochelys olivacea*), the federally listed as threatened green sea turtle (*Chelonian mydas*), and the federally listed as endangered leatherback sea turtle (*Dermochelys coriacea*). All of these turtles have the centers of their populations elsewhere, but they are seen occasionally off the southern California coast. Leatherback sea turtles are the most common sea turtle in United States waters north of Mexico. The National Marine Fisheries Service recently has designated Critical Habitat for leatherback sea turtles (NMFS 2012); however, the Los Angeles County coast is not within the designated Critical Habitat.

Marine Mammals

Two species of pinniped federally designated as threatened and six species of whales federally listed as endangered have **no to low** potential to occur in the nearshore waters off Redondo County Beach. The threatened pinnipeds are the Guadalupe fur seal (*Arctocephalus townsendi*) and the Stellar sea lion (*Eumetopias jubatus*). The endangered whales are blue whale (*Balaenoptera musculus*), sei whale (*B. borealis*), fin whale (*B. physalus*), humpback whale (*Megaptera novaeangliae*), northern right whale (*Balaena glacialis*), and sperm whale (*Physeter macrocephalus*). Although any of these species potentially could occur in Project area waters, their presence would be unlikely and are not expected.

3.2 FISH AND ESSENTIAL FISH HABITAT

The Essential Fish Habitat (EFH) Mapper (NOAA 2018) identified the harbor as EFH for all life stages for Finfish, Krill – *Thysonoessa Spinifera*, Krill – *Euphausia Pacifica*, Other Krill Species, Coastal Pelagic Species, and Groundfish. The offshore disposal site is identified for all the life stages for the species management units listed above plus Common Thresher Shark and Dorado. The EFH Mapper identified there are no Habitat Areas of Particular Concern and no EFH Areas Protected from Fishing at either the harbor or offshore disposal site. MarineBIOS (CDFW 2018) identifies the harbor as Riprap and Sheltered Man-Made Structures and the beach nearest the offshore disposal site as Fine to Medium Grained Sand Beaches (Figure 5).

In accordance with the 1996 amendments to the Magnuson-Stevens Fishery Management and Conservation Act, the U.S. Army Corps of Engineers, before it issues its section 404 permit for the project, will need to consult with NOAA Fisheries regarding impacts to Essential Fish Habitat. The project site is located within an area designated as Essential Fish Habitat for two Fishery Management Plans: Coastal Pelagic Species Fishery Management Plan and Pacific Coast Groundfish Fishery Management Plan.

7

King Harbor supports a diverse and abundant fish community. Many of the species federally managed under these management plans are known or expected to occur in the area and could be affected by sediment removal and in-water disposal. Species managed under the Coastal Pelagic Species Fishery Management Plan that may have the potential to occur in King Harbor include northern anchovy (*Engraulis mordax*), Pacific sardine (*Sardinops sagax*), Pacific mackerel (*Scomber japonicus*), jack mackerel (*Trachurus symeetricus*), and market squid (*Doryteuthis opalescens*). Species managed under the Pacific Coast Groundfish Fishery Management Plan that may have the potential to occur in the project area include leopard shark (*Triakis semifasciata*), big skate (*Raja binoculata*), spiny dogfish (*Squalus acanthias*), cabezon (*Scorpaenichthys marmoratus*), two species of flatfish (*Pleuronichthys decurrens, Pleuronectes vetulis*) and at least 9 species of rockfish (*Sebastes chrysomelas, S. auriculatus, S. caurinus, S. rastrelliger, S. atrovirens, S. dalli, S. serranoides, S. serriceps* and *Scorpaena guttata*).

California grunion spawn on southern California sand beaches between March and September during the highest nighttime tides. Although there is sandy beach near the offshore disposal site, the Proposed Project activities would not occur during the times of spawning and would [not?] interfere directly or indirectly with the sandy beach and would not affect California grunion.

Sediment removal activities, as well as in-water disposal, would temporarily disturb fishes in the project area. It is anticipated that many fishes will avoid the shoal and disposal areas when activities are occurring but will re-occupy the areas when sediment removal is completed at the end of each day and/or at project completion. A lower number of fish species would be expected to occur post-construction compared to pre-dredging numbers; however, the number of fish would be expected to return to pre-dredging levels within a few months (Soule et al. 1993).

Based on the underwater surveys, no eelgrass or Caulerpa were found within the Project Area (Appendix B). The shoal areas and in-water disposal areas are primarily soft bottom and do not contain any eelgrass beds, kelp beds, or rocky reefs that would be expected to support a high diversity and abundance of fishes. Any boulders in the shoal area would be small and scattered and do not function as reefs. The habitat of the shoal and disposal sites would be soft bottom following project completion and would be expected to support a fish population similar to the one that currently occurs in these areas.

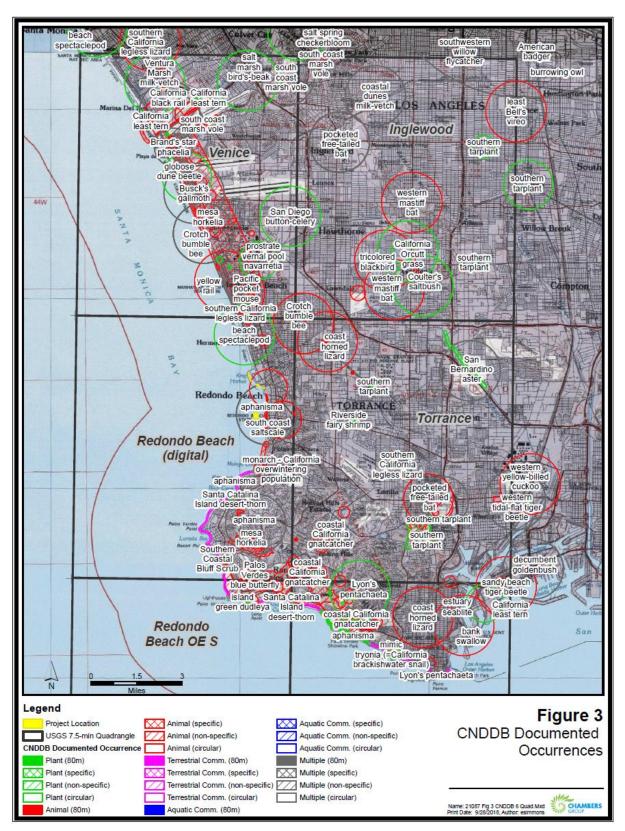


Figure 3: CNDDB Documented Occurrences

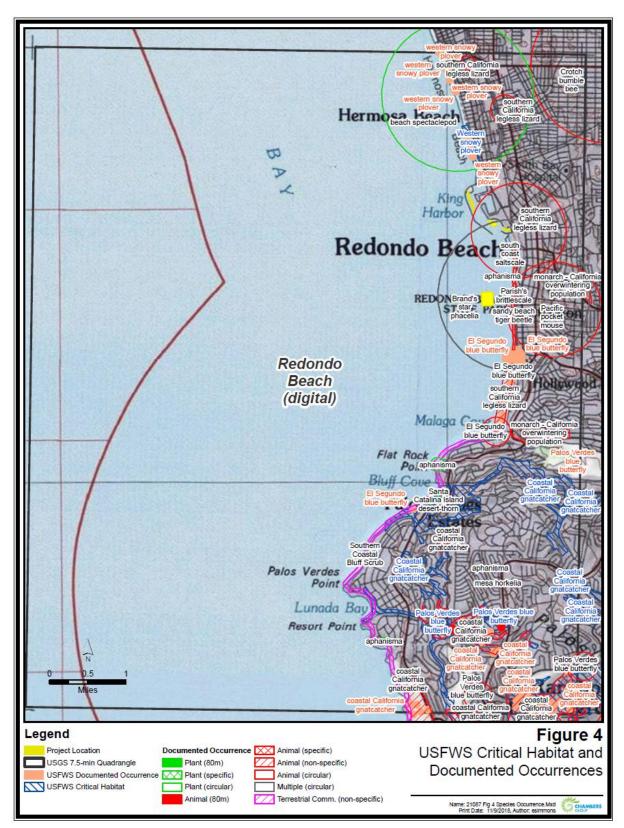
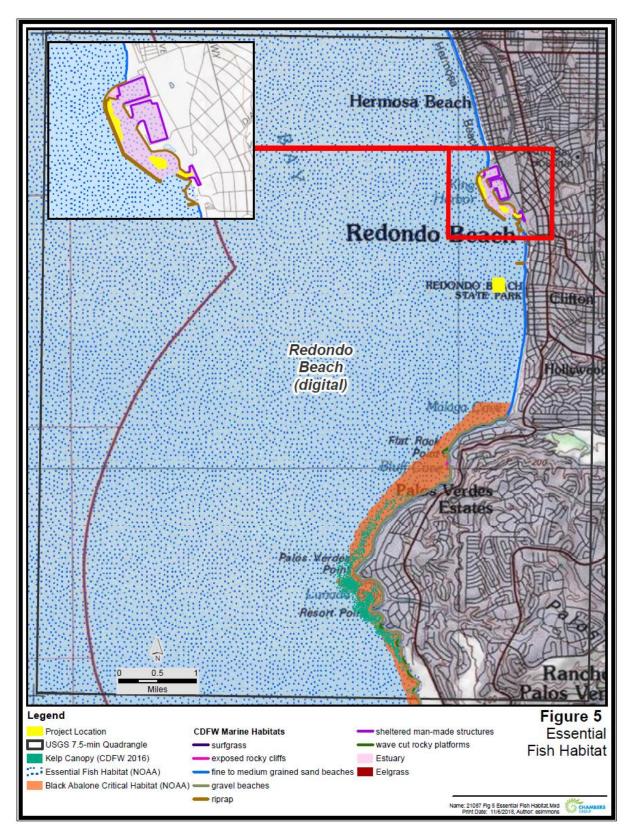



Figure 4: USFWS Critical Habitat and USFWS Documented Occurrences

Figure 5: Essential Fish Habitat

SECTION 4.0 - CONCLUSIONS

This section summarizes the findings of the biological reconnaissance-level surveys of the project site. The King Harbor Maintenance Dredging Project would not be expected to affect any listed species or special marine habitats. No eelgrass or Caulerpa were found within the Project Area.

Sedentary and slow moving marine organisms that live in or on the sand in the shoal area would be removed with the sediments that are removed. Sedentary and slow-moving organisms in the in-water disposal area would be buried by the placement of sediment at the offshore site. Following shoal removal, both the shoal and disposal sites would be colonized by organisms similar to those that presently occur at these sites. Most benthic macroinvertebrates are short-lived and many are rapid colonizers. In addition to invertebrates directly removed by dredging, soft bottom invertebrates living adjacent to the dredging area may be indirectly affected by burial and turbidity of sediments disturbed by the dredge. The dredging would not be expected to result in a long-term change in the diversity, density, or species composition of soft bottom benthic communities in King Harbor. The impacts of the Project on the marine resources of King Harbor are expected to be temporary.

Fishes and large mobile invertebrates would be expected to vacate the shoal and disposal areas, as well as adjacent areas, when in-water activities are occurring. Fishes within the proposed dredging area will be disturbed by the dredging. Many fishes may be able to avoid the dredging areas, but fishes that remain in the area may be subjected to suspended sediment from the dredge. In addition to the turbidity, the noise and disturbance associated with the dredging could cause fishes to avoid the dredging area. Dredging would be expected to cause a temporary decrease in fish diversity, but fish communities would return to normal within a few months.

The turbidity from dredging as well as the physical presence of the dredge could interfere with foraging by waterbirds by causing birds to temporarily avoid the dredging area. It is expected that birds would only avoid the areas very near to the dredge and would use parts of the harbor more distant from the dredging operations. Turbidity will be controlled during dredging so that it does not increase turbidity in the harbor more than 20 percent above ambient. In addition, some birds may be drawn to the potential prey that may be exposed in the plumes as sediment is disturbed. Therefore, turbidity plumes that could interfere with the foraging of waterbirds would be minimal. Impacts to birds from the proposed harbor dredging would be short term and limited to the immediate dredging area.

SECTION 5.0 – REFERENCES

California Department of Fish and Wildlife (CDFW)

- 2018 California Natural Diversity Database (CNDDB). RareFind Version 5.2.14. Database Query for the *Redondo Beach, Venice, Inglewood, Torrance, San Pedro, and Redondo Beach OE S* California USGS 7.5-minute quadrangles. Wildlife and Habitat Data Analysis Branch.
- 2018 Marine BIOS. Kelp canopy 2016. https://map.dfg.ca.gov/marine/

National Oceanic and Atmospheric Administration National Marine Fisheries Service

2018 Essential Fish Habitat Mapper. Habitat Conservation.

https://www.habitat.noaa.gov/protection/efh/efhmapper/

- U.S. Fish and Wildlife Service (USFWS)
 - 2018 Information for Planning and Consultation. https://ecos.fws.gov/ipac/location/YAEHR4XU7ZGNRGLA6HOXKHDLLA/resources

SNAME	CNAME	PRESENCE	ОССТҮРЕ	OCCRANK	SENSITIV E	FEDLIST	CALLIST	GRANK	SRANK	R PLANT RANK	CDFWS TATUS	SITEDATE
Perognathus longimembris pacificus	Pacific pocket mouse	Extirpated	Natural/Native occurrence	None	N	Endangered	None	G5T1	S1		SSC	19310905
Dithyrea maritima	beach spectaclepod	Extirpated	Natural/Native occurrence	None	N	None	Threatened	G1	S1	18.1		19980701
Cicindela hirticollis gravida	sandy beach tiger beetle	Extirpated	Natural/Native occurrence	None	N	None	None	G5T2	S2			1979XXXX
Glaucopsyche lygdamus palosverdesensis	Palos Verdes blue butterfly	Extirpated	Natural/Native occurrence	None	N	Endangered	None	G5T1	S1			1988XXXX
Glaucopsyche lygdamus palosverdesensis	Palos Verdes blue butterfly	Extirpated	Natural/Native occurrence	None	N	Endangered	None	G5T1	S1			1988XXXX
Glaucopsyche lygdamus palosverdesensis	Palos Verdes blue butterfly	Extirpated	Natural/Native occurrence	None	N	Endangered	None	G5T1	S1			1988XXXX
Glaucopsyche lygdamus palosverdesensis	Palos Verdes blue butterfly	Extirpated	Natural/Native occurrence	None	N	Endangered	None	G5T1	51			1988XXXX

SNAME	CNAME	LOCATION	LOCDETAILS	ECOLOGICAL	THREAT	GENERAL
Perognathus longimembris pacificus	Pacific pocket mouse	CLIFTON, EAST OF REDONDO STATE BEACH.				HISTORIC SITE. 3 SBMNH SPECIMENS AND 1 MVZ SPECIMEN (MALE, #47325), ALL COLLECTED IN SEP 1931.
Dithyrea maritima	beach spectaclepod	HERMOSA BEACH, 2 MILES NORTH OF REDONDO.	EXACT LOCATION UNKNOWN. MAPPED BY CNDDB IN GENERAL VICINITY OF HERMOSA BEACH. INCLUDES COLLECTIONS FROM "NEAR REDONDO," "REDONDO BEACH," AND "2 MILES NORTH OF REDONDO."	SAND DUNES.		TYPE LOCALITY. OCCURRENCE IS BASED ON COLLECTIONS FROM 1892, 1894, 1898, 1899, & 1902. EXTIRPATED AT THIS SITE ACCORDING TO P. AIGNER; SURVEYED FROM PLAYA DEL REY TO PALOS VERDES PENINSULA IN 1998.
Cicindela hirticollis gravida	sandy beach tiger beetle	REDONDO BEACH.		INHABITED CLEAN, DRY, LIGHT- COLORED SAND IN THE UPPER ZONE.	SENSITIVE TO CONTACT WITH HUMANS.	HISTORICAL LOCATION.
Glaucopsyche lygdamus palosverdesensis	Palos Verdes blue butterfly	ALTA VISTA WAY WEST OF HAWTHORNE BLVD; RANCHO PALOS VERDES.		FORMERLY A LARGE, UNDISTURBED COASTAL TERRACE.		EXTIRPATED BY HOUSING DEVELOPMENT & ROAD CONSTRUCTION IN 1978; NO ADULTS OR LARVAL FOODPLANTS FOUND IN 1979. IN 1976, ASTRAGALUS FROM THIS LOCATION WERE SALVAGED & REPLANTED IN PORTUGUESE CYN. REINTRODUCTION WOULD REQUIRE CONTINUAL MGMT.
Glaucopsyche lygdamus palosverdesensis	Palos Verdes blue butterfly	ALTAMIRA CANYON, NEAR NARCISSA DR, ALONG FOOT TRAIL; RANCHO PALOS VERDES.				ASTRAGALUS FOUND HERE IN 1982; NO PVBB OBSERVED. CURRENTLY, THIS SITE REMAINS OPEN SPACE/COASTAL SAGE SCRUB HABITAT, BUT MAY BE DEVELOPED IN THE FUTURE. NO ASTRAGALUS FOUND IN 1986. GOOD AREA FOR RE- ESTABLISHMENT OF ASTRAGALUS.
Glaucopsyche lygdamus palosverdesensis	Palos Verdes blue butterfly	AGUA AMARGA CANYON, 0.4 KM UP CANYON; RANCHO PALOS VERDES/PALOS VERDES ESTATES.		WEED MANAGEMENT NECESSARY FOR SUCCESSFUL REINTRODUCTION OF FOODPLANT. NO ASTRAGALUS SEEN HERE 1981 THROUGH 1988.	GOPHERS AND WEEDS EXTIRPATED ASTRAGALUS.	DESIGNATED CRITICAL HABITAT IN 1980. ONLY KNOWN COLONY OF PVBB AND ASTRAGALUS TO GO EXTINCT FROM DIRECT HUMAN ALTERATION OF HABITAT. AREA CONTINUED TO BE OPEN SPACE WITH NO DEVELOPMENT; CANYON TOO STEEP FOR DISKING.
Glaucopsyche lygdamus palosverdesensis	Palos Verdes blue butterfly	FRED HESSE PARK, WEST OF HAWTHORNE BLVD AT LOCHLEMA LANE, RANCHO PALOS VERDES.	ABOUT 15 ACRES AT THE WEST END OF SITE REMAINS UNDEVELOPED AND SOME IS DESIGNATED A NATIVE PLANT/NATURE STUDY AREA BY THE CITY; REMAINDER IS DISKED ANNUALLY.	NO ASTRAGALUS SEEN HERE 1983 THROUGH 1988.		DESIGNATED CRITICAL HABITAT IS 1980. RESTORATION OF NATURAL AREA POSSIBLE. THE BUTTERFLY AND ASSOCIATED LARVAL FOODPLANT EXTIRPATED BY PARK DEVELOPMENT IN 1982. MATTOON COUNTED 6 ADULTS ON 20 FOOD PLANTS ON BEST DAY IN SPRING 1982.

SNAME	CNAME	PRESENCE	ОССТУРЕ	OCCRANK	SENSITIV E	FEDLIST	CALLIST	GRANK	SRANK	R PLANT RANK	CDFWS TATUS	SITEDATE
Horkelia cuneata var. puberula	mesa horkelia	Possibly Extirpated	Natural/Native occurrence	None	N	None	None	G4T1	S1	18.1		19310326
Glaucopsyche lygdamus palosverdesensis	Palos Verdes blue butterfly	Possibly Extirpated	Natural/Native occurrence	None	N	Endangered	None	G5T1	S1			1988XXXX
Bombus crotchii	Crotch bumble bee	Presumed Extant	Natural/Native occurrence	Unknown	N	None	None	G3G4	S152			19380710
Phacelia stellaris	Brand's star phacelia	Presumed Extant	Natural/Native occurrence	Unknown	N	None	None	G1	S1	1B.1		18970320
Atriplex pacifica	south coast saltscale	Presumed Extant	Natural/Native occurrence	Unknown	N	None	None	G4	52	1B.2		19031015
Anniella stebbinsi	southern California legless lizard	Presumed Extant	Natural/Native occurrence	Poor	N	None	None	G3	S3		SSC	19650702

SNAME	CNAME	LOCATION	LOCDETAILS	ECOLOGICAL	THREAT	GENERAL
Horkelia cuneata var. puberula	mesa horkelia	PALOS VERDE HILLS.	EXACT LOCATION UNKNOWN. MAPPED AS A BEST GUESS.	HILLSIDE.	THERE HAS BEEN MUCH DEVELOPMENT IN THIS AREA SINCE COLLECTIONS WERE MADE, POSSIBLY EXTIRPATED.	SITE BASED ON TWO 1931 PURER COLLECTIONS.
Glaucopsyche lygdamus palosverdesensis	Palos Verdes blue butterfly	NEAR INTERSECTION OF SEACREST DRIVE, CRENSHAW BLVD AND CREST RD; RANCHO PALOS VERDES.	,			SITE DISCOVERED IN 1981; GRADING DESTROYED MOST OF HABITAT IN 1982-83. IN 1983, 6 ASTRAGALUS PLANTS SURVIVED IN TWO PATCHES, BUT LATER GRADING REDUCED # OF PLANTS TO ONLY TWO. NO PALOS VERDES BLUE BUTTERFLIES OBSERVED SINCE 1982.
Bombus crotchii	Crotch bumble bee	NORTH REDONDO.	EXACT LOCATION UNKNOWN. MAPPED BY CNDDB IN THE NORTHERN PORTION OF THE CITY OF REDONDO BEACH.			COLLECTIONS WERE MADE IN THIS VICINITY IN JUN 1938 AND ON 10 JUL 1938.
Phacelia stellaris	Brand's star phacelia	NEAR REDONDO.	EXACT LOCATION UNKNOWN. ORIGINAL LABEL CITES "NEAR RIDONDO," MAPPED AS BEST GUESS BY CNDDB NEAR PRESENT-DAY REDONDO BEACH.			ONLY SOURCE OF INFORMATION FOR THIS OCCURRENCE IS AN 1897 COLLECTION BY MCCLATCHIE. NEEDS FIELDWORK.
Atriplex pacifica	south coast saltscale	REDONDO.	EXACT LOCATION UNKNOWN. MAPPED AS BEST GUESS BY CNDDB IN VICINITY OF REDONDO BEACH.			ONLY SOURCE OF INFORMATION FOR THIS OCCURRENCE IS A 1903 COLLECTION BY BRANDEGEE. NEEDS FIELDWORK.
Anniella stebbinsi	southern California legless lizard	VICINITY OF PIER AVE AND PACIFIC COAST HIGHWAY (HIGHWAY 1), HERMOSA BEACH.	COLLECTED AT VACANT LOT. AREA WELL DEVELOPED IN 1960 & 1965 AERIALS. THE N SIDE OF PIER AVE JUST W OF HIGHWAY WAS RESIDENTIAL HOUSES, ONE LOT APPEARED UNDEVELOPED IN AERIALS NEAR 703 PIER AVE. HISTORIC HERMOSA BEACH SPECIMENS INCLUDED HERE.	COLLECTED FROM A VACANT LOT. AERIAL IMAGERY FROM 1952, 1960, AND 1965 SHOWS THAT MOST OF TH AREA WAS PRIMARILY DEVELOPED AT THE TIME WITH ESSENTIALLY LITTLE		HISTORIC HERMOSA BEACH COLLECTIONS FROM 1943 AND 1965. TWO COLLECTED FROM A VACANT LOT IN THIS AREA ON ON 2 JUL 1965 (CARL GANS COLLECTION #CG 3364, #CG 3365).

SNAME	CNAME	PRESENCE	ОССТУРЕ	OCCRANK	SENSITIV E	FEDLIST	CALLIST	GRANK	SRANK	R PLANT RANK	CDFWS TATUS	SITEDATE
Anniella stebbinsi	southern California legless lizard	Presumed Extant	Natural/Native occurrence	Poor	N	None	None	G3	53		SSC	19760301
Southern Coastal Bluff Scrub	Southern Coastal Bluff Scrub	Presumed Extant	Natural/Native occurrence	Unknown	N	None	None	G1	S1.1			19900901
Anniella stebbinsi	southern California legless lizard	Presumed Extant	Natural/Native occurrence	Unknown	N	None	None	G3	S3		SSC	20010422
Anniella stebbinsi	southern California legless lizard	Presumed Extant	Natural/Native occurrence	Poor	N	None	None	G3	S3		SSC	20020818
Polioptila californica californica	coastal California gnatcatcher	Presumed Extant	Natural/Native occurrence	Good	N	Threatened	None	G4G5T2Q	52		SSC	20060610

SNAME	CNAME	LOCATION	LOCDETAILS	ECOLOGICAL	THREAT	GENERAL
Anniella stebbinsi	southern California legless lizard	REDONDO BEACH.	COLLECTION SITES UNKNOWN. MAPPED TO GENERAL AREA NEAR HISTORIC POST OFFICE THAT WAS LESS DEVELOPED UNTIL ABOUT 1968. MOST SPECIFIC SITE STATED, 625 CATALINA AVE, IS UNCERTAIN IF N CATALINA OR S CATALINA; 625 N CATALINA AVE WITHIN POLYGON.	ONE COLLECTED IN A SANDY AREA FROM UNDER A BOARD. GRINNELL MENTIONS IN GRI07A0001 THAT HIS COLLECTION FROM 1904 WAS "FROM THE SAND DLINES NEAR BEDONDO"	DEVELOPMENT.	COLLECTED IN 1904, 1915, 1963, AND 1976.
Southern Coastal Bluff Scrul	b Southern Coastal Bluff Scrut	BLUFFS OF PALOS VERDES PENINSULA FROM MALAGA COVE TO CABRILLO BEACH.	ALONG BLUFFS AND STEEP SLOPES OF IMMEDIATE COAST; DISTRIBUTION PATCHY WITHIN BOUNDED AREA DUE TO DEVELOPMENT AND DISTURBANCE.	NATIVE SPP INCLUDE RHUS INTEGRIFOLIA, ENCELIA CA, ISOCOMA MENZIESII, LYCIUM CALIFORNICA, ATRIPLEX LENTIFORMIS, ISOMERIS, OPUNTIA SPP., ERIOGONUM CINEREUM, DUDLEYA VIRENS; W/LOWER PORTIONS OF SLOPES, SUAEDA. 15-90% COVER.	DEVELOPMENT AND DISTURBANCE ASSOCIATED WITH RECREATION, INVASIVE EXOTICS.	CONDITION AND COMPOSITION VARIES ALONG THE PENINSULA; LARGE PORTIONS WITH INVASIVE EXOTICS. SEE WWW.DFG.CA.GOV/BIOGEODATA/VEGCAMP/NATU RAL_COMM_BACKGROUND.ASP TO INTERPRET AND ADDRESS THE PRESENCE OF RARE COMMUNITIES.
Anniella stebbinsi	southern California legless lizard	TORRANCE COUNTY BEACH, NORTH OF THE PALOS VERDES ESTATES AND SOUTH OF REDONDO BEACH.	MAPPED NON-SPECIFICALLY TO BEACH AREA FROM MALAGA COVE NORTH TO MIRAMAR PARK.			ONE COLLECTED ON 22 APR 2001.
Anniella stebbinsi	southern California legless lizard	VICINITY OF VALLEY PARK, END OF MORNINGSIDE DRIVE, CITY OF HERMOSA BEACH.				ONE COLLECTED ON 18 AUG 2002.
Polioptila californica californica	coastal California gnatcatcher	PALOS VERDES PENINSULA NEAR PT VINCENTE & LONG PT, NE TO CREST RD (INCLUDING MCCARRELLS CYN), RANCHO PALOS VERDES.	ALONG PALOS VERDES DR W, PALOS VERDES DR S, & HAWTHORNE BLVD. RECENT DATA FROM PT VINCENTE PARK/CIVIC CENTER ('98 & 06), PENINSULA POINTE (ALBERO CT, '97-06), & BARKENTINE CYN PRESERVE ('00 & 06). UPDATED W/ 56 DIGITAL 80 M POLYS FROM FWS.	MOST FOUND IN AREAS OF SAGEBRUSH OR CACTUS SCRUB IN 1993-95 PENINSULA SURVEY. DOMINATED BY ARTEMISIA CALIFORNICA, ERIOGONUM FASCICULATUM, & SALVIA MELLIFERA. SOME AREAS NOW OPEN SPACE (PVPLC.ORG). MCCARRELL'S CYN (BARKENTINE) SIG HABITAT.	THREATENED BY ONGOING URBAN DEVELOPMENT AND FREE-ROAMING DOMESTIC CATS.	1980: 5PRS & 1IND. '90: 24BRDS, 6TERR. '91: 2PRS. '95: 8PRS. '97: 5TERR, 6 NESTS, 19 FLDG. '98: 4PRS. '00: 12 AD, 12 JUV; 5 OBS. '01: 7PRS, 1 FLDG. '02: 7TERR, 2 FLDG. '03: 7PRS, 3UKN. '04: 11 AD, 2UKN. '06: 9 AD (ALBERO), 58 OBS.

SNAME	CNAME	PRESENCE	ОССТҮРЕ	OCCRANK	SENSITIV E	FEDLIST	CALLIST	GRANK	SRANK	R PLANT RANK	CDFWS TATUS	SITEDATE
Polioptila californica californica	coastal California gnatcatcher	Presumed Extant	Natural/Native occurrence	Unknown	N	Threatened	None	G4G5T2Q	52		SSC	20060809
Aphanisma blitoides	aphanisma	Presumed Extant	Natural/Native occurrence	Good	N	None	None	G3G4	S2	1B.2		20080308
Aphanisma blitoides	aphanisma	Presumed Extant	Natural/Native occurrence	Unknown	N	None	None	G3G4	S2	1B.2		20090405
Atriplex coulteri	Coulter's saltbush	Presumed Extant	Natural/Native occurrence	Unknown	N	None	None	G3	S1S2	1B.2		20120601
Lycium brevipes var. hassei	Santa Catalina Island desert thorn	Presumed Extant	Natural/Native occurrence	Unknown	N	None	None	G5T1Q	S1	3.1		20130408
Aphanisma blitoides	aphanisma	Presumed Extant	Natural/Native occurrence	Unknown	N	None	None	G3G4	52	1B.2		193004XX
Polioptila californica californica	coastal California gnatcatcher	Presumed Extant	Natural/Native occurrence	Unknown	N	Threatened	None	G4G5T2Q	S2		SSC	1980XXXX

SNAME	CNAME	LOCATION	LOCDETAILS	ECOLOGICAL	THREAT	GENERAL
Polioptila californica californica	coastal California gnatcatcher	AGUA AMARGA CANYON, PALOS VERDES PENINSULA, PALOS VERDES ESTATES & RANCHO PALOS VERDES.	1993-95 STUDY: AGUA AMARGA CYN WAS 1 OF 3 CYN'S THAT SUPPORTED MOST OF THE PALOS VERDES PENINSULA BREEDING POPULATION. FWS DIGITAL DATA: 9 AUG 06 SITE NAME PORTUGUESE BEND NATURE PRESERVE; 9 APR 06 AT 29941 HAWTHORNE BLVD.	HABITAT IS COASTAL SAGE SCRUB, DOMINATED BY ARTEMISIA CALIFORNICA, ERIOGONUM FASCICULATUM, AND SALVIA MELLIFERA. THIS AREA IS CRITICAL TO THE SURVIVAL OF GNATCATCHERS ON THE PALOS VERDES PENINSULA. MUCH NOW IN OPEN SPACE PRESERVES IN 2008.	LIBBAN DEVELOPMENT	1980: 3 PRS OBS, 5-10 PRS EST. 1995: 4 PRS OBS. POOR SURVIVAL OF ADULTS & JUV'S DURING WINTER OF 1994-95. 2006: 2 DETECTED ON 9 APR BY S. REED (TERACOR), 3 GROUPS OF 1 & 2 GROUP OF 2 DETECTED ON 9 AUG BY J. TURNBULL ET AL (DUDEK).
Aphanisma blitoides	aphanisma	PALOS VERDES; PASEO DEL MAR & VIA NEVE.	TRAILHEAD DOWN CLIFFSIDE, WHERE PASEO DEL MAR CROSSES VIA NEVE.	COASTAL BLUFF SCRUB. CALANDRINIA MARITIMA AND ANTIRRHINUM NUTTALLIANUM ALSO AT THIS SITE.	LANDSLIDE AREA.	8 PLANTS SEEN IN 2008.
Aphanisma blitoides	aphanisma	FLAT ROCK POINT, PALOS VERDES ESTATES.	EXACT LOCATION UNKNOWN. MAPPED BY CNDDB AS BEST GUESS AT FLAT ROCK POINT.	COASTAL BLUFF SCRUB.		~100 PLANTS IN 2009.
Atriplex coulteri	Coulter's saltbush	PALOS VERDES ESTATES; MALAGA COVE IMMEDIATELY SW OF THE PALOS VERDES BEACH AND ATHLETIC CLUB.	MAPPED ACCORDING TO 2012 GEORGE COORDINATES.	JUST ABOVE HIGH TIDE LINE ON ROCKY BEACH CUT FROM STORM SURGE.		ONLY SOURCE OF INFORMATION FOR THIS SITE IS A 2012 GEORGE COLLECTION.
Lycium brevipes var. hassei	Santa Catalina Island desert thorn	BLUFF COVE; NEAR - INTERSECTION OF PASEO DEL MAR AND PALOS VERDES DR, PALOS VERDES PENINSULA.	MAPPED AS 2 POLYGONS FROM 2011 AND 2013 RIEFNER COORDINATES, IN THE NORTH HALF OF SECTION 36.	ON BLUFF-TOP AND ALONG TRAIL IN COASTAL BLUFF SCRUB.	TRAIL OR ROAD MAINTENANCE.	WEST POLYGON: 2 THICKET-FORMING SHRUBS OBSERVED IN 2011. EAST POLYGON: "LOCALLY COMMON" IN 2010, 10 PLANTS OBSERVED IN 2013.
Aphanisma blitoides	aphanisma	PALOS VERDES HILLS.	EXACT LOCATION UNKNOWN. MAPPED BY CNDDB IN THE VICINITY OF PALOS VERDES HILLS.			ONLY SOURCE OF INFORMATION FOR THIS SITE IS A 1930 CATEY COLLECTION. NEEDS FIELDWORK.
Polioptila californica californica	coastal California gnatcatcher	BETWEEN VIA ZURITA & VIA CORONEL, CORONELL CANYON, PALOS VERDES PENINSULA.	MAPPED TO PROVIDED MAP. LOCALITY: CORONELL CANYON; REFERENCE #: 357.	-		1 PAIR DETECTED DURING FIELD WORK CONDUCTED BETWEEN DEC 1979 - DEC 1980 IN WINTER, SPRING & FALL.

SNAME	CNAME	PRESENCE	ОССТҮРЕ	OCCRANK	SENSITI\ E	FEDLIST	CALLIST	GRANK	SRANK	R PLANT RANK	CDFWS TATUS	SITEDATE
Euphilotes battoides allyni	El Segundo blue butterfly	Presumed Extant	Natural/Native occurrence	Unknown	N	Endangered	None	G5T1	51			1990XXXX
Euphilotes battoides allyni	El Segundo blue butterfly	Presumed Extant	Natural/Native occurrence	Unknown	N	Endangered	None	G5T1	S1			2007XXXX
Danaus plexippus pop. 1	monarch - California overwintering population	Presumed Extant	Natural/Native occurrence	Good	Ν	None	None	G4T2T3	S2S3			201411XX
Danaus plexippus pop. 1	monarch - California overwintering population	Presumed Extant	Natural/Native occurrence	Unknown	N	None	None	G4T2T3	5253			201411XX
Aphanisma blitoides	aphanisma	Presumed Extant	Natural/Native occurrence	Unknown	N	None	None	G3G4	52	18.2		xxxxxxx
Atriplex parishii	Parish's brittlescale	Presumed Extant	Natural/Native occurrence	Unknown	N	None	None	G1G2	S1	1B.1		xxxxxxx

SNAME	CNAME	LOCATION	LOCDETAILS	ECOLOGICAL	THREAT	GENERAL
Euphilotes battoides allyni	El Segundo blue butterfly	MALAGA COVE, JUST NORTH OF THE PALOS VERDES PENINSULA.	AREA IS APPROXIMATELY 1 ACRE (1983). PRIVATE LAND ALONG THE BASE OF THE BLUFFS SUPPORT ERIOGONUM PARVIFOLIUM AND THE EL SEGUNDO BLUE BUTTERFLY.	THE SITE WITH THE MOST ERIOGONUM PARVIFOLIUM WAS DAMAGED BY EROSION CONTROL DURING THE WINTER OF 1994/95.	SITE HEAVILY OVERGROWN WITH ICEPLANT AND ERODED.	DISCOVERED AT THIS SITE IN 1983 BY J. MORTON AND T. LEIGH. 1984: ONE DAY POPULATION COUNT OF 60; FEWER THAN 50 PLANTS WITH 30,000 FLOWERHEADS. 1990 SURVEY INDICATED THE STATUS HAD REMAINED UNCHANGED SINCE 1984.
Euphilotes battoides allyni	El Segundo blue butterfly	MIRAMAR PARK, REDONDO BEACH.				BUTTERFLIES OBSERVED AT MIRAMAR PARK DURING 2007.
Danaus plexippus pop. 1	monarch - California overwintering population	VIA LA SELVA, FROM ITS WEST END NEAR PALOS VERDES BLVD TO THE VIA PASCUAL INTERSECTION, PALOS VERDES ESTATES.	TREATED AS TWO SITES IN MONARCH PROGRAM/XERCES SOCIETY COUNTS: VIA LA SELVA & VIA CAPAY (XERCES SITE #2893) AND #2817 VIA LA SELVA (XERCES SITE #2894). (XERCES ALSO HAS OVERALL SITE, #2880 BASED ON OLD CNDDB OCCURRENCE).	EUCALYPTUS WINDROWS IN YARDS OF PRIVATE RESIDENCES ON BOTH SIDES OF THE STREET; ROOST SITES VARY FROM YEAR TO YEAR. IN 1998, AT LEAST, CLUSTERS WEREN'T LOCATED BUT NUMBER OF FLYERS INDICATED THERE WERE AGGREGATIONS NEARBY.		REPORTS OF LARGE CLUSTERS IN 1960S. 30K REPORTED, DEC 1984. 10S ON 17 JAN 1986. AT VIA CAPAY: 3K/1985, 300/1998, 150/2000, 10/2001. 3/2003, 0/2014. AT #2817: 800/1998, 0/2000, 10/2001, 6/2003, 0/2014.
Danaus plexippus pop. 1	monarch - California overwintering population	WILDERNESS PARK, NORTH OF SEPULVEDA BLVD, 0.5 MILE WEST OF PALOS VERDES BLVD, REDONDO BEACH.	XERCES SITE #2881.	ROOST TREES ARE EUCALYPTUS.		CLUSTERS OBSERVED, NOV 1989. 200 OBS, 15 NOV 1997. 300 OBS, 8 NOV 1998. 0 OBS 7 DEC 2000. 35 OBS 30 NOV 2001. 20 OBS IN 2003, 12 IN 2007, 2 IN 2008, AND 2 IN 2014 DURING THANKSGIVING COUNTS.
Aphanisma blitoides	aphanisma	REDONDO.	EXACT LOCATION UNKNOWN. MAPPED BY CNDDB AS BEST GUESS IN THE VICINITY OF REDONDO BEACH, LOS ANGELES.			ONLY SOURCE OF INFORMATION FOR THIS SITE IS AN UNDATED RUSSELL COLLECTION. NEEDS FIELDWORK.
Atriplex parishii	Parish's brittlescale	REDONDO (BEACH?).	EXACT LOCATION UNKNOWN. MAPPED BY CNDDB AS BEST GUESS AT REDONDO BEACH.			MAIN SOURCE OF LOCATION INFORMATION FOR THIS SITE IS AN UNDATED BRAUNTON COLLECTION. NEEDS FIELDWORK.

EFH Mapper

EFH Data Notice: Essential Fish Habitat (EFH) is defined by textual descriptions contained in the fishery management plans developed by the regional Fishery Management Councils. In most cases mapping data can not fully represent the complexity of the habitats that make up EFH. This report should be used for general interest queries only and should not be interpreted as a definitive evaluation of EFH at this location. A location-specific evaluation of EFH for any official purposes must be performed by a regional expert. Please refer to the following links for the appropriate regional resources.

West Coast Regional Office Alaska Regional Office

Query Results

Map Scale = 1:18,056 Degrees, Minutes, Seconds: Latitude = 33°50'42" N, Longitude = 118°23'57" E Decimal Degrees: Latitude = 33.85, Longitude = -118.40

The query location intersects with spatial data representing EFH and/or HAPCs for the following species/management units.

EFH

Show	Link	Data Caveats	Species/Management Unit	Life stage(s) Found at Location	Management Council	FMP
25	L		Finfish	ALL	Pacific	Null
2	4	٢	Krill - Thysanoessa Spinifera	ALL	Pacific	Null
M	F	0	Krill - Euphausia Pacifica	ALL	Pacific	Null
1	Y	\odot	Other Krill Species	ALL	Pacific	Null
25	L.		Coastal Pelagic Species	ALL	Pacific	Null
25	L		Groundfish	ALL	Pacific	Groundfish

HAPCs

No Habitat Areas of Particular Concern (HAPC) were identified at the report location.

EFH Areas Protected from Fishing

No EFH Areas Protected from Fishing (EFHA) were identified at the report location.

Spatial data does not currently exist for all the managed species in this area. The following is a list of species or management units for which there is no spatial data.

**For links to all EFH text descriptions see the complete data inventory: open data inventory -->

Spatial data does not currently exist for all the managed species in this area. The following is a list of species or management units for which there is no spatial data.

**For links to all EFH text descriptions see the complete data inventory: open data inventory -->

Pacific Coastal Pelagic Species,
Jack Mackerel,
Pacific (Chub) Mackerel,
Pacific Sardine,
Northern Anchovy - Central Subpopulation,
Northern Anchovy - Northern Subpopulation,
Pacific Highly Migratory Species,
Bigeye Thresher Shark - North Pacific,
Bluefin Tuna - Pacific,
Dolphinfish (Dorado or Mahimahi) - Pacific,
Pelagic Thresher Shark - North Pacific,
Swordfish - North Pacific,
West Coast Salmon,
All species and stocks

.

EFH Mapper

EFH Data Notice: Essential Fish Habitat (EFH) is defined by textual descriptions contained in the fishery management plans developed by the regional Fishery Management Councils. In most cases mapping data can not fully represent the complexity of the habitats that make up EFH. This report should be used for general interest queries only and should not be interpreted as a definitive evaluation of EFH at this location. A location-specific evaluation of EFH for any official purposes must be performed by a regional expert. Please refer to the following links for the appropriate regional resources.

West Coast Regional Office Alaska Regional Office

Query Results

Map Scale = 1:18,056 Degrees, Minutes, Seconds: Latitude = 33°49'43" N, Longitude = 118°23'48" E Decimal Degrees: Latitude = 33.83, Longitude = -118.40

The query location intersects with spatial data representing EFH and/or HAPCs for the following species/management units.

EFH						
Show	Link	Data Caveats	Species/Management Unit	Life stage(s) Found at Location	Management Council	FMP
25	<u>L</u>	٢	Common Thresher Shark	ALL	Pacific	Null
25	L.		Finfish	ALL	Pacific	Null
25	<u>L</u>	٢	Krill - Thysanoessa Spinifera	ALL	Pacific	Null
25	L	0	Krill - Euphausia Pacifica	ALL	Pacific	Null
25	L.		Other Krill Species	ALL	Pacific	Null
25	L.		Coastal Pelagic Species	ALL	Pacific	Null
25	L.		Groundfish	ALL	Pacific	Groundfish
25	L.		Dorado	ALL	Pacific	Null

HAPCs

No Habitat Areas of Particular Concern (HAPC) were identified at the report location.

EFH Areas Protected from Fishing

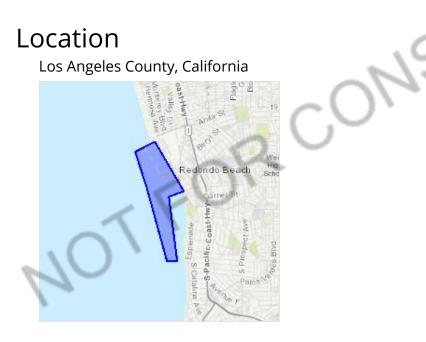
No EFH Areas Protected from Fishing (EFHA) were identified at the report location.

Spatial data does not currently exist for all the managed species in this area. The following is a list of species or management units for which there is no spatial data.

**For links to all EFH text descriptions see the complete data inventory: open data inventory -->

Spatial data does not currently exist for all the managed species in this area. The following is a list of species or management units for which there is no spatial data.

**For links to all EFH text descriptions see the complete data inventory: open data inventory -->


Pacific Coastal Pelagic Species,
Jack Mackerel,
Pacific (Chub) Mackerel,
Pacific Sardine,
Northern Anchovy - Central Subpopulation,
Northern Anchovy - Northern Subpopulation,
Pacific Highly Migratory Species,
Bigeye Thresher Shark - North Pacific,
Bluefin Tuna - Pacific,
Dolphinfish (Dorado or Mahimahi) - Pacific,
Pelagic Thresher Shark - North Pacific,
Swordfish - North Pacific,
West Coast Salmon,
All species and stocks

IPaC

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Local office

Carlsbad Fish And Wildlife Office

└ (760) 431-9440**i** (760) 431-5901

2177 Salk Avenue - Suite 250 Carlsbad, CA 92008-7385

http://www.fws.gov/carlsbad/

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME

STATUS

Endangered

Pacific Pocket Mouse	Perognathus longimembris pacificus
No critical habitat has	been designated for this species.
https://ecos.fws.gov/ed	<u>cp/species/8080</u>

Birds

NAME	STATUS
Coastal California Gnatcatcher Polioptila californica californica There is final critical habitat for this species. Your location is outside the critical habitat. <u>https://ecos.fws.gov/ecp/species/8178</u>	Threatened
Western Snowy Plover Charadrius nivosus nivosus There is final critical habitat for this species. Your location is outside	Threatened
the critical habitat. <u>https://ecos.fws.gov/ecp/species/8035</u>	~T101
Insects NAME	STATUS
El Segundo Blue Butterfly Euphilotes battoides allyni There is proposed critical habitat for this species. The location of the critical habitat is not available. https://ecos.fws.gov/ecp/species/3135	Endangered

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act^1 and the Bald and Golden Eagle Protection Act^2 .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The <u>Migratory Birds Treaty Act</u> of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern <u>http://www.fws.gov/birds/management/managed-species/</u> <u>birds-of-conservation-concern.php</u>
- Measures for avoiding and minimizing impacts to birds <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u> <u>conservation-measures.php</u>
- Nationwide conservation measures for birds <u>http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf</u>

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds</u> of <u>Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A BREEDING SEASON IS INDICATED FOR A BIRD ON YOUR LIST, THE BIRD MAY BREED IN YOUR PROJECT AREA SOMETIME WITHIN THE TIMEFRAME SPECIFIED, WHICH IS A VERY LIBERAL ESTIMATE OF THE DATES INSIDE WHICH THE BIRD BREEDS ACROSS ITS ENTIRE RANGE. "BREEDS ELSEWHERE" INDICATES THAT THE BIRD DOES NOT LIKELY BREED IN YOUR PROJECT AREA.)

Black-vented Shearwater Puffinus opisthomelas This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. Breeds elsewhere

JIFOR

8/2018	IPaC: Explore Location				
warrants attention because of	ion Concern (BCC) in this area, but	Breeds elsewhere			
warrants attention because of	ion Concern (BCC) in this area, but the Eagle Act or for potential as from certain types of development	Breeds Jan 15 to Sep 30			
Clark's Grebe Aechmophorus This is a Bird of Conservation C the continental USA and Alaska	Concern (BCC) throughout its range in	Breeds elsewhere			
warrants attention because of	as from certain types of development	Breeds Apr 15 to Oct 31			
warrants attention because of	ion Concern (BCC) in this area, but the Eagle Act or for potential as from certain types of development	Breeds Apr 15 to Aug 15			
warrants attention because of	ion Concern (BCC) in this area, but the Eagle Act or for potential as from certain types of development	Breeds May 10 to Sep 10			
warrants attention because of	ion Concern (BCC) in this area, but the Eagle Act or for potential as from certain types of development	Breeds Apr 20 to Aug 31			

11/8/2018 IPaC: Explore Location	
Herring Gull Larus argentatus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.	Breeds Apr 20 to Aug 31
Least Tern Sterna antillarum This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.	Breeds Apr 20 to Sep 10
Northern Fulmar Fulmarus glacialis This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.	Breeds elsewhere
Parasitic Jaeger Stercorarius parasiticus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.	Breeds elsewhere
Pomarine Jaeger Stercorarius pomarinus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.	Breeds elsewhere
Red-breasted Merganser Mergus serrator This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.	Breeds elsewhere
Red-necked Phalarope Phalaropus lobatus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.	Breeds elsewhere
Red-throated Loon Gavia stellata This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds elsewhere

101

Ring-billed Gull Larus delawarensis This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

Royal Tern Thalasseus maximus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

Surf Scoter Melanitta perspicillata

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

White-winged Scoter Melanitta fusca

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any

Breeds Apr 15 to Aug 31

Breeds elsewhere

Breeds elsewhere

Breeds elsewhere

week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.

3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (|)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (–)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

				🗖 proba	bility of	presence	e 📕 bre	eding se	eason	survey e	urvey effort – no data		
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
Black-vented Shearwater BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	***	+++	++++	++++	++++	++++	++++	++++	++++	₩ ₩₩+	++++	++##	
Bonaparte's Gull Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	++++	++++	++++	+++#	# +++	++++	++++	++++	++++	++++	++##	++#	

IPaC: Explore Location

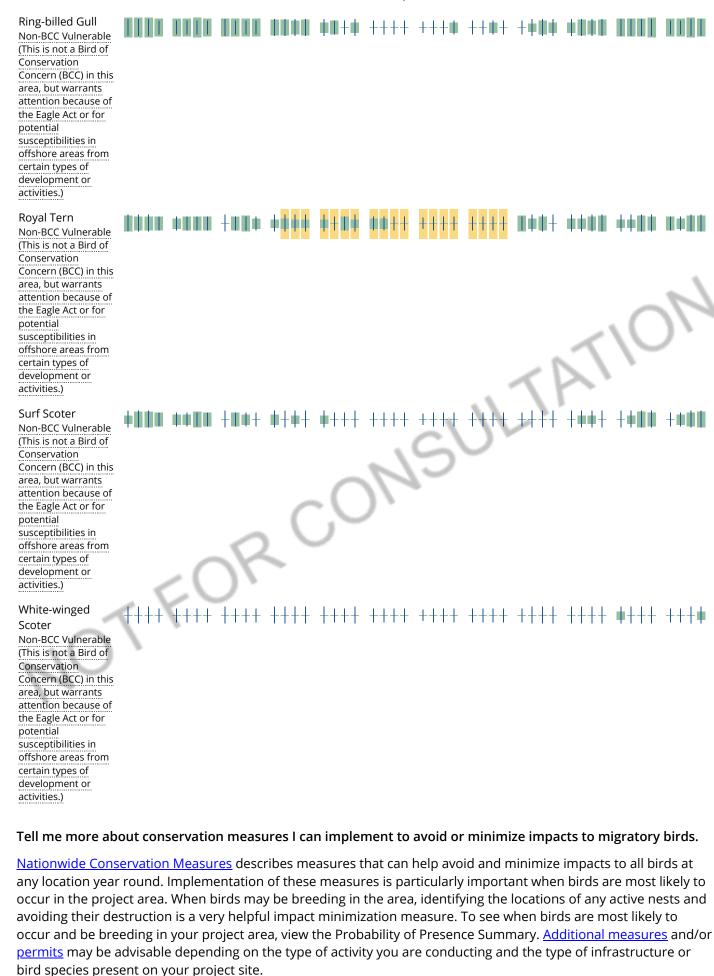
Brown Pelican Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)				1114		1111	+11	1111	1111	****	****	111
Clark's Grebe BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	\$ 11	++#+	++++	++++	**#*	H+##	+#++	₩+++	++++	+ * **	++++	++++++
Common Loon Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	┼║║║	**+*	+***	••••	++++ - C	++++ N	""" S	++++ کر			4.PRA	4+1+
Common Murre Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	+++*	****	+++	+ <mark>111</mark>	11++	++++	++++	++++	++++	++++	++++	++++
Common Tern Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)		++++	++++	++++	++++	++++	++++	++++	* ++	++++	++++	++++

IPaC: Explore Location

Double-crested Cormorant Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.) Herring Gull **** ++++ +#++ ###+ #### Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this

Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)

Least Tern Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)


Northern Fulmar Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)

CC

IPaC: Explore Location

Parasitic Jaeger Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	++++	++++	++++	++++	++++	++++	++++	++++	++++	+++#	+++	++++
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Pomarine Jaeger Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	++++	++#+	++++	++++	++++	++++	++++	++++	++++	++++	++++ C	++++
Red-breasted Merganser Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	++++	+++*	****	•+++	++++ 	++++	++++	++++	++++	++++	++ # #	+**
Red-necked Phalarope Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	++++	++++	++++	₩ ₩ + ₩	₩₩++	++++	++++	++++	++++	++++	++++	++++
Red-throated Loon BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	*#**		+# # #	**++	++++	++++	++++	++++	++++	+++#	+++#	+###

IPaC: Explore Location

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>E-bird Explore Data Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey, banding, and citizen</u> <u>science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: <u>The Cornell Lab of Ornithology All About Birds Bird Guide</u>, or (if you are unsuccessful in locating the bird of interest there), the <u>Cornell Lab of Ornithology Neotropical Birds</u> <u>guide</u>. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

IPaC: Explore Location

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS</u> <u>Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam</u> <u>Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities Wildlife refuges and fish hatcheries

REFUGE AND FISH HATCHERY INFORMATION IS NOT AVAILABLE AT THIS TIME

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of</u> <u>Engineers District</u>. Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

This location overlaps the following wetlands:

ESTUARINE AND MARINE DEEPWATER

M1UBL E1UBL E1UBLx

ESTUARINE AND MARINE WETLAND

M2USN E2RSPr M2RSPr E2USMh E2USPh M2USP

A full description for each wetland code can be found at the National Wetlands Inventory website

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

https://ecos.fws.gov/ipac/location/YAEHR4XU7ZGNRGLA6HOXKHDLLA/resources

APPENDIX B – EELGRASS AND CAULERPA UNDERWATER SURVEY REPORT

Eelgrass (Zostera marina) and Caulerpa taxifolia Pre Construction Survey Report

KING HARBOR DREDGE PROJECT

KING HARBOR, CALIFORNIA

Survey Date: September 22, 2018

Prepared for: Chambers Group, Inc. 5 Hutton Centre Drive, Suite 750, Santa Ana, CA 92707 Contact: Lisa Louie

> Prepared by: Anghera Environmental 1274 Alta Vista Drive, California 92084 Contact: Mike Anghera Senior Marine Biologist 805 698 1004

TABLE OF CONTENTS

Section	Page
INTRODUCTION	1
Invasive Algae, Caulerpa <i>taxifolia</i>	2
SURVEY M E T H O D S	3
Survey Areas	4
Field Survey Methods	5
RESULTS	8
Underwater Conditions	8
Site Specific Observations	9
Outer Harbor	
Basin 3 Channel and Alternative Site	10
Harbor Placement Site	11
Offshore Placement Site	
IMPACT ASSESSMENT	12
LITERATURE CITED	13

1. INTRODUCTION

Anghera Environmental (Anghera) and Ecomarine Consulting (Ecomarine), was retained by Chambers Group, Inc. (Chambers Group) to conduct pre-dredge eelgrass survey and impact assessment for the dredging of multiple areas in King Harbor, Los Angeles County, California.

This report presents the results of focused surveys conducted on September 22, 2018 (preconstruction) to identify the distribution and abundance of eelgrass (*Zostera marina*) and *Caulerpa taxifolia* within the project area and limits of dredging, as well as identify potential project impacts on eelgrass. The results of both eelgrass and *Caulerpa taxifolia* surveys are summarized in this document but presented in full in separate reports for each of the target study areas in and around King Harbor.

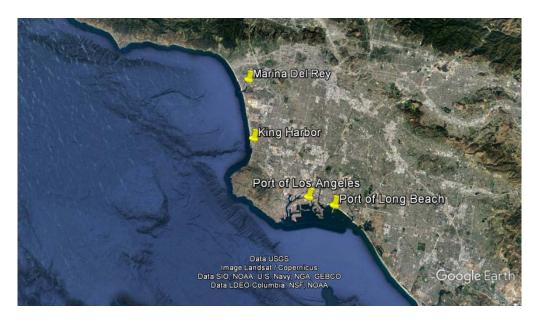


Figure 1. Regional Project Location.

Figure 2. Project Survey Areas, King Harbor.

1

2. INVASIVE ALGAE (CAULERPA TAXIFOLIA)

Invasive algae *Caulerpa taxifolia* has a potential to cause ecosystem-level impacts on California's bays and nearshore systems due to its extreme ability to out-compete other algae and seagrasses. *Caulerpa taxifolia* grows as a dense smothering blanket, covering and killing all native aquatic vegetation in its path when introduced tomarine habitat. It was introduced into southern California in 2000 (Agua Hedionda Lagoon and Huntington Harbour) by way of individuals likely dumping their aquaria waters into storm drains, or directly into the lagoons. While outbreaks have been contained, the State Water Resources Control Board, through the National Marine Fisheries Service and the California Department of Fish and Wildlife require that projects that have potential to spread this species through dredging and other bottom-disturbing activities, conduct preconstruction surveys to determine if this species is present and, if so, to eradicate the species prior to conduct of the construction project, using standard agency-approved protocols and by National Marine Fisheries Service/California Department of Fish and Wildlife Certified Field Surveyors.

Figure 3. The Invasive Algae, Caulerpa taxifolia. Source: NOAA/NMFS

3. SURVEY METHODS

The pre-construction field survey using scuba diver transects was conducted on September 22, 2018, by Anghera and Ecomarine staff. Field personnel included Mr. Mike Anghera (Senior Marine Biologist-Diver), Dr. Kimo Morris (Senior Marine Biologist-Diver) and Mr. Clint Nelson (Senior Marine Biologist-Diver-Boat Operator).

Mr. Anghera served as the field leader for this project. Mr. Anghera has had extensive experience in monitoring marine ecosystems and conducting projects in a wide variety of habitats. Mr. Anghera was responsible for the overall conduct of the proposed survey and for the quality, accuracy, and timeliness of the results. Mr. Anghera is currently certified by the California Department of Fish & Wildlife to conduct *Caulerpa* surveys and ensured that the subtidal survey program was conducted safely and adhered to accepted criteria of the Southern California Eelgrass Monitoring Policy (1991).

Mr. Anghera, Dr. Morris and Mr. Nelson are current members in good standing with the American Academy of Underwater Sciences (AAUS) and conducted all surveys in accordance with the safe diving standards as outlined in the current AAUS Scientific Diving Manual.

Underwater scientists using scuba diver transects were conducted at intervals sufficient to assure at least 50% coverage of the bottom. Track lines were maintained by differential-GPS and compass bearings at either end of the transect lines. Any eelgrass or *Caulerpa* noted were to be marked and GPS coordinates taken to exactly relocate the position to measure the size of the patch or patches.

4. SURVEY AREAS

The project area was comprised of four distinct survey areas based on the project footprints in each zone of the Harbor (Figures 4-7). These survey zones included the Outer Harbor dredge area (Figure 4), Basin 3 Channel and alternative site (Figure 5), the Harbor Placement Site (Figure 6) and the Offshore Placement Area (Figure 7).

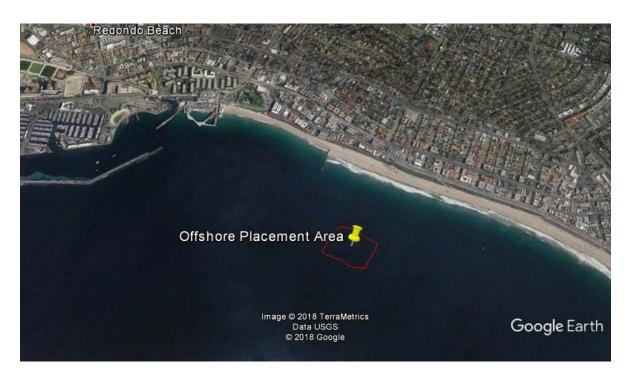

Figure 4. Project Survey Area: Outer Harbor

Figure 5. Project Survey Area: Basin 3 Channel and Alternative.

Figure 6. Project Survey Area: Harbor Placement Site.

Figure 7. Project Survey Area: Offshore Placement Area.

5. FIELD SURVEY METHODS

The survey was conducted according to the California Eelgrass Mitigation Policy (National Marine Fisheries Service [NMFS] 2014) and the NMFS *Caulerpa* Survey Protocol, Version 4, 2008. The methods utilized for the survey included scuba diver transects and GPS (Global Positioning System) mapping conducted by certified marine biologists employing agency-approved transect techniques for conducting eelgrass and invasive algae surveys.

Diver surveys were conducted by biologists using in water GPS units to map any Caulerpa and eelgrass patches encountered in the study areas. Underwater transects were swam by biologist-divers while a topside boat operator in the research vessel Bula remained at anchor nearby to monitor other vessel traffic and render assistance to the divers.

Field conditions noted during the survey included characteristic marine flora and fauna, the presence or absence of *Caulerpa* and eelgrass, depth ranges, and bottom physical attributes, were recorded during the diver surveys at each of the study sites. Underwater still photographs and video were taken at each of the study sites.

Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the NOAA tidal survey station at the entrance of Los Angeles Harbor.

Figures 8-11 depict the diver transects at each of the study areas. Two divers swam side by side at a distance dependent on the given visibility at that time.



Figure 8. Project Survey Area and Diver Transects-Outer Harbor

Figure 9. Project Survey Area and Diver Transects- Basin 3 Channel and Alt

Figure 11. Project Survey Area and Diver Transects- Offshore Placement Area

6. RESULTS

Habitat types in the project areas include shallow subtidal soft bottom sediments, mudflats, and rocky rip rap that was exposed at the time of the survey.

Caulerpa taxifolia. *Caulerpa* was <u>not</u> observed in any of the study sites during the diver surveys. Divers surveyed covered at least 70% of each project area. A 20% minimum covered is required in non-infected systems when *Caulerpa* pre-and-post construction surveys are conducted. Please refer to the individual *Caulerpa* reporting forms for each of the project locations.

Zostera marina. Zostera was <u>not</u> observed in any of the study sites during the diver surveys. Divers surveyed covered at least 70% of each project area. A 50% minimum covered is required when *Zostera* pre-and-post construction surveys are conducted. Please refer to the individual *Zostera marina* reporting forms for each of the project locations.

7. UNDERWATER CONDITIONS

Water temperatures at the bottom during the survey ranged from 16.78° C (62.2° F) to 21.6° C (70.9° F). The range of depths that were surveyed by divers varied between 0.0 to -46 ft (-14m) MLLW.

Sediment types were highly variable. Multiple benthic transition zones were observed within the study areas in the harbor. In the shallows, a transition zone between hard packed sand and weathered sand was often seen. Very little growth was observed in the hard packed sand along with little evidence of infauna tubes. The weathered sand continued out to varying distances from the where the sediment transitioned to soft mud. Evidence of burrowing infauna was more typical, with infauna burrows seen throughout. Within the deeper channels fine silt was predominant, while at the offshore placement area, only coarse sand was observed.

8. SITE SPECIFIC OBSERVATIONS

OUTER HARBOR

Pictures taken of: Benthos, transition zones, rip rap, surfgrass on rip rap, bacteria mats Personnel: Mike Anghera, Kimo Morris, Clint Nelson Weather: Sunny, clear, no wind, 0.5-1' swell Time on Site: 0845 Time in water: 0855 BT: 35 minutes Max Depth: 21' Water Temp: 70° Viz: 5-10'

Rip rap present on west side of channel, rubble and shell debris to 5-6' depth. From 6' to 8' depth hard coarse sand bar, fine silt to 20' and beyond. Observed movement of water through rocks due to swell. Bacterial mats present in 8'-10' depths. *Phyllospadix torrey* on rip rap boulders. Lots of algal detritus offshore in 20' of water consisting of *Phyllospadix, torrey and Gelidium robustum*.

	Common Name	Scientific Name
Algae	Sea Grass	Phyllospadix torrey
	Corraline algae	Corralina sp.
	Brown bubbles	Colpomenia sp.
	Sargassum	Sargassum muticum
	Seaweed	Dictyota sp.
nverts	Sponges	Haliclona sp.
	Sea Slugs	Navanax inermis
	Oysters	Ostrea pacifica
	Ornate Tube Worm	Diopatra Ornata
	Sand Dollar	Dendraster excentricus
	Lewis's Moon Snail	Neverita lewisii
	Purple Olive Snail	Callianax biplicata
	Sea Snail	Chlorostoma sp.
	California Spiny Lobster	Panulirus interruptus
	Bubble Snail	Haminoea sp.
	Western Banded Tegula	Tegula eiseni
	Bubble Snail	Bulla sp.
	Blue Banded Hermit Crab	Paugurus samuelis
Fish	Round Stingrays	Urobatis halleri
	Rainbow Surfperch	<i>Hypsurus</i> sp.
	Opaleye Perch	Girella nigricans
	Kelp Bass	Paralabrax clathrantus
	Anchovies	Engraulis mordax

Species Observed:

OUTER HARBOR

Species Observed:

	Common Name	Scientific Name
Fish	Top Smelt	Atherinops affinis
	Sargo	Diplodus sp.
		Paralabrax
	Spotted Bay Bass	masculatofasciatus
	Garibaldi	Hypsypops rubicundus
	Salema	Haemulon californiensis
	Fantail Sole	Xystreurys liolepsis
	Spotted Turbot	Pleuronichthys ritteri
	California Halibut	Paralichthys californicus
	Rock Wrasse	Halichoeres semicinctus
	Black Surf Perch	Embiotoca jacksoni
	Zebra Perch	Hermosilla azure

BASIN 3 CHANNEL AND ALTERNATIVE SITE

Pictures taken of: Benthos, transition zones, rip rap, Personnel: Mike Anghera, Kimo Morris, Clint Nelson Weather: Sunny, clear, no wind, 0.5-1' swell Time on Site: 1155 Time in water: 1205 BT: 25 minutes Max Depth: 24' Water Temp: 70° Viz: 10-15'

Rip rap present on east side of channel with encrusting corraline agae, rubble and shell debris to 5-6' depth. From 6' to 8' depth hard coarse sand bar, fine silt to 20' and beyond. Lots of algal detritus offshore in 20' of water consisting of *Phyllospadix, torrey, Macrocystis pyrifera and Sargassum muticum*.

Species Observed:

	Common Name	Scientific Name
Algae	Encrusting red algae	Corralina sp.
Inverts	Tube Dwelling Anemone	Pachycerianthus sp.
	Sea Slugs	Navanax inermis
	Nudibranchs	Acanthodoris luteus
	Oysters	Ostrea pacifica
Fish	Round Stingrays	Urobatis halleri
	Rainbow Surfperch	Hypsurus sp.

BASIN 3 CHANNEL AND ALTERNATIVE SITE

Species Observed:

Fish	Common Name	Scientific Name
	Opaleye Perch	Girella nigricans
	Garibaldi	Hypsypops rubicundus
	Top Smelt	Atherinops affinis
	Spotted Turbot	Pleuronichthys ritteri
	Rock Wrasse	Halichoeres semicinctus
	Zebra Perch	Hermosilla azure

HARBOR PLACEMENT SITE

Pictures taken of: Benthos Personnel: Mike Anghera, Kimo Morris, Clint Nelson Weather: Sunny, clear, no wind, 0.5-1' swell Time on Site: 1045 Time in water: 1050 BT: 30 minutes Max Depth: 39' Water Temp: 62° Viz: 5-10'

Benthos consisted of fine silt with many burrows. Lots of plastic and metal trash mixed with algal detritus

Species Observed:

	Common Name	Scientific Name
Algae	Red Sea Grapes	Botryocladia sp.
Inverts	Tube Dwelling Anemone	Pachycerianthus sp.
	Sea Pen	Ptilosarcus sp
	Sea Cucumber	Apostichopus californicus
	Kellet's Whelk	<i>Kelletia</i> sp.
	Mitre shells	<i>Mitridae</i> sp.
	Bubble Snail	Haminoea sp.
Fish		
	Blue Banded Goby	Lythrypnus dalli
	Senorita	Oxyjulis californica
	Kelp Bass	Paralabrax clathrantus

OFFSHORE PLACEMENT SITE

Pictures taken of: Benthos Personnel: Mike Anghera, Kimo Morris, Clint Nelson Weather: Sunny, clear, wind 10-15 kts, 1-2' swell Time on Site: 1240 Time in water: 1255 BT: 35 minutes Max Depth: 46' Water Temp: 63° Viz: 15-20'

Benthos consisted of three distinct zones:
46'-43': Coarse sand with shell rubble.
43'-41': Dense mat of algal detritus composed of pieces of *Macrocystis, Egegia, Eisenia, Phyllospadix, Sargassum and Gelidium.*41'-38': San dollar bed with coarse sand and well-defined sand ridges.

Species Observed:

	Common Name	Scientific Name
Inverts		
	Tube Dwelling Anemone	Pachycerianthus sp.
	Ornate Tube Worm	Diopatra Ornata
	Giant Sea Star	Pisaster sp.
	Sand Dollar	Dendraster excentricus
	Sea Pansy	Ranilla sp.
	Sea Pen	Ptilosarcus sp.
Fish	Senorita	Oxyjulis californica
	Kelp Bass	Paralabrax clathrantus

9. IMPACT ASSESSMENT

No eelgrass or Caulerpa was observed in the any of the study areas for this project during this survey. Therefore, planned dredging activities should not negatively affect any eelgrass beds in the project areas.

9.0 LITERATURE CITED

National Marine Fisheries Service. 2008. *Caulerpa* control protocol. Version 4, March 28th, 2008. National Marine Fisheries Service Southwest Region, Long Beach, CA. 7 pp.

National Marine Fisheries Service. 2014. California Eelgrass Mitigation Policy and Implementing Guidelines. National Marine Fisheries Service, West Coast Region. Long Beach, CA. 45 pp.

October 10, 2018

Dear Ms. Louie,

Please find Anghera Environmental's eelgrass (*Zostera marina*) report for the Basin 3 Channel Area in King Harbor, California.

We did not find any eelgrass in the project area during this survey. Please do not hesitate to give me a call if you have any questions.

Sincerely,

M. Anghera

Mike Anghera Anghera Environmental President/Senior Marine Biologist

Anghera Environmental. 1274 Alta Vista Dr, Vista Ca 92084 805 698 1004 *Zostera marina* Survey Reporting Form Basin 3 Channel Project King Harbor, California Survey Date: September 22, 2018

Prepared for:

Lisa Louie

Senior Project Manager

Chambers Group, Inc.

5 Hutton Centre Drive, Suite 750, Santa Ana, CA 92707

t | 949.261.5414 x7289

Prepared by: Anghera Environmental 1274 Alta Vista Drive, California 92084 Contact: Mike Anghera Senior Marine Biologist (805) 698-1004

This form is required to be submitted for any surveys conducted for the eelgrass, *Zostera marina*, that are required to be conducted under federal or state permits and authorizations issued by the U.S. Army Corps of Engineers and the Coastal Commission. The form has been designed to assist in identifying eelgrass while ensuring that the required information is consistently documented. Surveys required to be conducted for this species are subject to modification through publication of revisions to the eelgrass survey policy. It is incumbent upon the authorized permittee to ensure that survey work is following the latest protocols. For further information on these protocols, contact: Bryant Chesney National Marine Fisheries Service, 562-980-4037, or William Paznokas, California Department of Fish & Wildlife 858-467-4218.

Site Name: (common reference)	Basin 3 Channel Area, King Harbor, California. See Figure 1
Survey Contact: (name, phone, e-mail)	Mike Anghera, Senior Marine Biologist, Anghera Environmental. (805) 698 1004 <u>mikeanghera@gmail.com</u> Client Contact: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289
Permit Reference: (ACOE Permit No., CCC Permit No.)	TBD
Hydrographic System: (bay, estuary, lagoon, or harbor) Specific Location: (UTM, Lat./Long.,	King Harbor, Los Angeles County, California. See Figure 1
datum, accuracy level, attach electronic survey area map if possible)	33. 84179 ° N 118. 39200° W to 33. 84151 ° N 118. 39279° W NAD 83. Accuracy within 1 meter. See Figure 1
Was Eelgrass Detected:	
	NO, Eelgrass was not found at this site.
Description of Permitted Work: (describe briefly the work to be conducted at the site under the permits identified above)	Maintenance Dredging Project Source: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289

Description of Site: (describe the physical and biological conditions within the survey area at the time of the survey and provide insight into variability, if known. Please provide units for all numerical	Depth range:	The depths encountered on depth just south of the dock channel, to a gradually slop to the south.	ts north of the main
information).	Substrate type and underwater visibility:	Hard packed coarse-grain s shallow zone of the study s fine sand and soft muddy se the main channel. On all swim transects, we h view of the bottom. Turbic study site was low with dec a clear view of the areal ex area relative to the dock str	ite, while a mixture of ediment was present in had an unobstructed lity throughout the cent visibility, giving us tent of eelgrass in the
	Temperature:	The water temperature during the survey was 21.6° C (70.9° F).	
	Salinity:	Harbor Range: 25-33 ppt	
	Dominant	Common Name	Scientific Name
	flora:		
	flora:	Algae Encrusting red alg	gae Corralina sp.
	Dominant	Common Name	gae <i>Corralina sp.</i> Scientific Name
		Common Name Tube Dwelling	Scientific Name
	Dominant	Common Name Tube Dwelling Anemone	Scientific Name Pachycerianthus sp.
	Dominant	Common Name Tube Dwelling Inverts Anemone Sea Slugs	Scientific Name Pachycerianthus sp. Navanax inermis
	Dominant	Common NameTube DwellingInvertsAnemoneSea SlugsNudibranchs	Scientific NamePachycerianthus sp.Navanax inermisAcanthodoris luteus
	Dominant	Common Name Tube Dwelling Inverts Anemone Sea Slugs	Scientific Name Pachycerianthus sp. Navanax inermis
	Dominant	Common NameTube DwellingInvertsAnemoneSea SlugsNudibranchsOysters	Scientific NamePachycerianthus sp.Navanax inermisAcanthodoris luteusOstrea pacifica
	Dominant	Common NameTube DwellingInvertsAnemoneSea SlugsNudibranchsOystersFishRound Stingrays	Scientific Name Pachycerianthus sp. Navanax inermis Acanthodoris luteus
	Dominant	Common NameTube DwellingInvertsAnemoneSea SlugsNudibranchsOysters	Scientific NamePachycerianthus sp.Navanax inermisAcanthodoris luteusOstrea pacifica
	Dominant	Common NameTube DwellingInvertsAnemoneSea SlugsNudibranchsOystersFishRound StingraysRainbow	Scientific Name Pachycerianthus sp. Navanax inermis Acanthodoris luteus Ostrea pacifica Urobatis halleri
	Dominant	Common NameTube DwellingInvertsAnemoneSea SlugsNudibranchsOystersFishRound StingraysRainbowSurfperch	Scientific Name Pachycerianthus sp. Navanax inermis Acanthodoris luteus Ostrea pacifica Urobatis halleri Hypsurus sp. Girella nigricans
	Dominant	Common NameTube DwellingInvertsAnemoneSea SlugsNudibranchsOystersFishRound StingraysRainbowSurfperchOpaleye PerchGaribaldi	Scientific Name Pachycerianthus sp. Navanax inermis Acanthodoris luteus Ostrea pacifica Urobatis halleri Hypsurus sp. Girella nigricans Hypsypops rubicundus
	Dominant	Common NameTube DwellingInvertsAnemoneSea SlugsNudibranchsOystersFishRound StingraysRainbowSurfperchOpaleye Perch	Scientific Name Pachycerianthus sp. Navanax inermis Acanthodoris luteus Ostrea pacifica Urobatis halleri Hypsurus sp. Girella nigricans
	Dominant	Common NameTube DwellingInvertsAnemoneSea SlugsNudibranchsOystersFishRound StingraysRainbowSurfperchOpaleye PerchGaribaldiTop Smelt	Scientific Name Pachycerianthus sp. Navanax inermis Acanthodoris luteus Ostrea pacifica Urobatis halleri Hypsurus sp. Girella nigricans Hypsypops rubicundus Atherinops affinis

	Exotic species encountered:	No noxious weed (<i>Caulerpa taxifolia</i>) was observed anywhere in the vicinity of the study area. No least terns or brown pelicans were seen in the vicinity of the project area. No marine mammals were observed in the area prior to beginning the survey.
	Other site description notes:	Small channel with multiple vessels en route at time of survey
Description of Survey Effort: (please describe the surveys conducted including type of survey (SCUBA, remote video, etc.) and survey methods employed, date of work,	Survey date and time period:	The survey was conducted on September 22, 2018 between 1200 and 1230 hrs. The survey was conducted by marine biologists using SCUBA and agency-approved transect techniques for conducting the eelgrass and invasive
and survey density (estimated percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.	Survey type and methods:	algae survey. Field conditions noted during the survey included bottom type, common marine life, and the presence or absence of <i>Caulerpa</i> and eelgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station.
	Survey personnel:	Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine Biologist
	Horizontal visibility in water:	Dive conditions during the survey were good, with adequate light throughout the day and good visibility (4-5 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.
	Survey density:	Biologist-divers swam a continuous transect within the project area and approximately 15m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.
	Survey Limitations:	Multiple vessels operating in the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists.

Other Information: (use	
this space to provide any	
additional information or	
references to attached	
materials such as maps,	See attached project figures.
reports, etc.)	Figure 1. Regional Project Location
	Figure 2. Dive Transects

Figure 1. Project Location. King Harbor, Los Angeles County, California

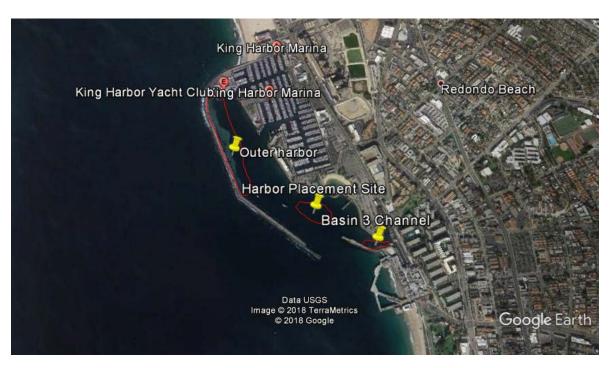


Figure 2. Project Survey Area and Diver Transects

October 10, 2018

Dear Ms. Louie,

Please find Anghera Environmental's eelgrass (*Zostera marina*) report for the Harbor Placement site in King Harbor, California.

We did not find any eelgrass in the project area during this survey. Please do not hesitate to give me a call if you have any questions.

Sincerely,

M. Anghera

Mike Anghera Anghera Environmental President/Senior Marine Biologist

Anghera Environmental. 1274 Alta Vista Dr, Vista Ca 92084 805 698 1004 *Zostera marina* Survey Reporting Form Harbor Placement Site King Harbor, California Survey Date: September 22, 2018

Prepared for:

Lisa Louie

Senior Project Manager

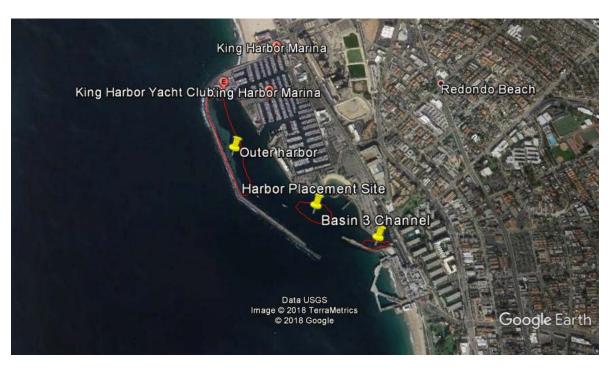
Chambers Group, Inc.

5 Hutton Centre Drive, Suite 750, Santa Ana, CA 92707

t | 949.261.5414 x7289

Prepared by: Anghera Environmental 1274 Alta Vista Drive, California 92084 Contact: Mike Anghera Senior Marine Biologist (805) 698-1004

This form is required to be submitted for any surveys conducted for the eelgrass, *Zostera marina*, that are required to be conducted under federal or state permits and authorizations issued by the U.S. Army Corps of Engineers and the Coastal Commission. The form has been designed to assist in identifying eelgrass while ensuring that the required information is consistently documented. Surveys required to be conducted for this species are subject to modification through publication of revisions to the eelgrass survey policy. It is incumbent upon the authorized permittee to ensure that survey work is following the latest protocols. For further information on these protocols, contact: Bryant Chesney National Marine Fisheries Service, 562-980-4037, or William Paznokas, California Department of Fish & Wildlife 858-467-4218.


Site Name: (common reference)	Harbor Placement Site, King Harbor, California. See Figure 1
Survey Contact: (name, phone, e-mail)	Mike Anghera, Senior Marine Biologist, Anghera Environmental. (805) 698 1004 <u>mikeanghera@gmail.com</u> Client Contact: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289
Permit Reference: (ACOE Permit No., CCC Permit No.)	TBD
Hydrographic System: (bay, estuary, lagoon, or harbor) Specific Location: (UTM, Lat./Long.,	King Harbor, Los Angeles County, California. See Figure 1 33° 50' 36.27" N 118° 23' 47.46" W to
datum, accuracy level, attach electronic survey area map if possible)	33° 50' 31.50" N 118° 23' 38.83"W NAD 83. Accuracy within 1 meter.
	See Figure 1
Was Eelgrass Detected:	
	NO, Eelgrass was not found at this site.
Description of Permitted Work: (describe briefly the work to be conducted at the site under the permits identified above)	Maintenance Dredging Project Source: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289

	1	1			
Description of Site:	Depth range:	-	hs encountered on	the dive ranged from 31'	
(describe the physical and		to 39'			
biological conditions within the survey area at the time of					
the survey area at the time of the survey and provide					
insight into variability, if					
known. Please provide units					
for all numerical					
information).					
- · · · · · · · · · · · · · · · · · · ·	Substrate type	Fine sand	l and soft muddy s	sediment was present in	
	and				
	underwater				
	visibility:	On all swim transects, we had an unobstructed view of the bottom. Turbidity throughout the			
		study site was low with decent visibility, giving us			
		a clear view of the bottom.			
	Tomporatura	noroturo. The sector terms don't a the second			
	Temperature:	The water temperature during the survey was $16.78^{\circ} C$ (62.2° F)			
	Salinity:	16.78° C (62.2° F) Harbor Pango: 25, 23 ppt			
	-	Harbor Range: 25-33 ppt			
	Dominant flora:		Common Name	Scientific Name	
	nora.	Algae	Red Sea Grapes	Botryocladia sp.	
	Dominant fauna:				
			Common Name	Scientific Name	
			Tube Dwelling		
		Inverts	Anemone	Pachycerianthus sp.	
			Sea Pen	Ptilosarcus sp	
			Sea Cucumber	Apostichopus californicus	
			Kellet's Whelk	Kelletia sp.	
			Mitre shells	Mitridae sp.	
	1	I			
			Bubble Snail		
			Bubble Snail	Haminoea sp.	
		Fich	Bubble Snail		
		Fish			
		Fish	Blue Banded	Haminoea sp.	
		Fish	Blue Banded Goby	Haminoea sp.	
		Fish	Blue Banded Goby Senorita	Haminoea sp. Lythrypnus dalli Oxyjulis californica	
		Fish	Blue Banded Goby	Haminoea sp.	
		Fish	Blue Banded Goby Senorita	Haminoea sp. Lythrypnus dalli Oxyjulis californica	

	Exotic species encountered:	No noxious weed (<i>Caulerpa taxifolia</i>) was observed anywhere in the vicinity of the study area. No least terns or brown pelicans were seen in the vicinity of the project area. No marine mammals were observed in the area prior to beginning the survey.
	Other site description notes:	Medium navigational channel with multiple vessels in the area at time of survey
Description of Survey Effort: (please describe the surveys conducted including type of survey (SCUBA, remote video, etc.) and survey methods employed, date of work, and survey density (estimated percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.	Survey date and time period: Survey type and methods:	The survey was conducted on September 22, 2018 between 1045 and 1130 hrs. The survey was conducted by marine biologists using SCUBA and agency-approved transect techniques for conducting the eelgrass and invasive algae survey. Field conditions noted during the survey included bottom type, common marine life, and the presence or absence of <i>Caulerpa</i> and eelgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station.
	Survey personnel:	Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine Biologist
	Horizontal visibility in water:	Dive conditions during the survey were good, with adequate light throughout the day and good visibility (2-3 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.
	Survey density:	Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.
	Survey Limitations:	Multiple vessels operating in the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists.

Other Information: (use	
this space to provide any	
additional information or	
references to attached	
materials such as maps,	See attached project figures.
reports, etc.)	Figure 1. Regional Project Location
T in the second s	Figure 2. Dive Transects
	rigure 2. Dive ritaliseets

Figure 1. Project Location. King Harbor, Los Angeles County, California

Figure 2. Project Survey Area and Diver Transects

Dear Ms. Louie,

Please find Anghera Environmental's eelgrass (*Zostera marina*) report for the Offshore Disposal area near King Harbor, California.

We did not find any eelgrass in the project area during this survey. Please do not hesitate to give me a call if you have any questions.

Sincerely,

M. Anghera

Mike Anghera Anghera Environmental President/Senior Marine Biologist

Zostera marina Survey Reporting Form Offshore Disposal Area King Harbor, California Survey Date: September 22, 2018

Prepared for:

Lisa Louie

Senior Project Manager

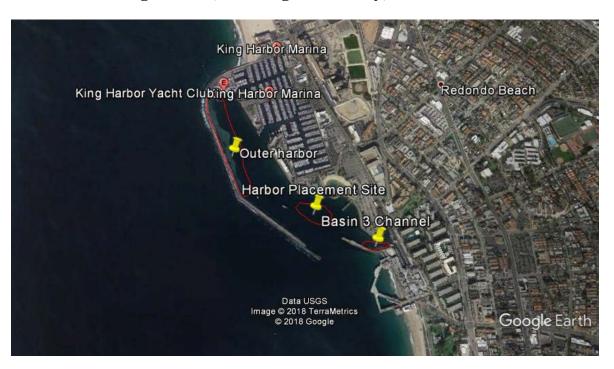
Chambers Group, Inc.

5 Hutton Centre Drive, Suite 750, Santa Ana, CA 92707

t | 949.261.5414 x7289

Prepared by: Anghera Environmental 1274 Alta Vista Drive, California 92084 Contact: Mike Anghera Senior Marine Biologist (805) 698-1004

This form is required to be submitted for any surveys conducted for the eelgrass, *Zostera marina*, that are required to be conducted under federal or state permits and authorizations issued by the U.S. Army Corps of Engineers and the Coastal Commission. The form has been designed to assist in identifying eelgrass while ensuring that the required information is consistently documented. Surveys required to be conducted for this species are subject to modification through publication of revisions to the eelgrass survey policy. It is incumbent upon the authorized permittee to ensure that survey work is following the latest protocols. For further information on these protocols, contact: Bryant Chesney National Marine Fisheries Service, 562-980-4037, or William Paznokas, California Department of Fish & Wildlife 858-467-4218.


Site Name: (common reference)	Offshore Disposal Area, King Harbor, California. See Figure 1
Survey Contact: (name, phone, e-mail)	Mike Anghera, Senior Marine Biologist, Anghera Environmental. (805) 698 1004 <u>mikeanghera@gmail.com</u> Client Contact: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289
Permit Reference: (ACOE Permit No., CCC Permit No.)	TBD
Hydrographic System: (bay, estuary, lagoon, or harbor) Specific Location: (UTM, Lat./Long.,	King Harbor, Los Angeles County, California. See Figure 1
datum, accuracy level, attach electronic survey area map if possible)	33° 49' 42.97" N 118° 23' 54.18" W to 33° 49' 42.27" N 118° 23' 42.26"W NAD 83. Accuracy within 1 meter. See Figure 1
Was Eelgrass Detected:	
	NO, Eelgrass was not found at this site.
Description of Permitted Work: (describe briefly the work to be conducted at the site under the permits identified above)	Maintenance Dredging Project Source: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289

Description of Site:	Depth range:	The dept	hs encountered on the dive	e ranged from 46ft
(describe the physical and	2 optil runge.	to 38'		
biological conditions within		10 20		
the survey area at the time of				
the survey and provide				
insight into variability, if				
known. Please provide units				
for all numerical				
information).	Substrata typa	Coorco	and was present throughout	t the study area
	Substrate type and	Coarse sa	and was present throughou	it the study area.
	underwater	On all av	vim transects, we had an u	nobstructed
	visibility:		he bottom. Turbidity thro	
	5		was low with decent visi	0
			ew of the areal extent of e	
			ive to the dock structure.	eigrass in the
	Temperature:		r temperature during the s	urvey was
	~	17.44° C (63.4° F) Ocean Range: 32-33 ppt		
	Salinity:			
	Dominant		ed algae were observed in th	
	flora:		onsisting of pieces of Macros	
			<i>dix torrey, Egregia Eisenia a</i> were found between the 43'	
		Toousium	were found between the 45	and 41 isobatils.
	Dominant		Common Name	Scientific Name
	Dominant fauna:		Common Name	Scientific Name
		Inverts	Common Name	Scientific Name
		Inverts	Common Name Tube Dwelling Anemone	Scientific Name
		Inverts		
		Inverts	Tube Dwelling Anemone	Pachycerianthus s
		Inverts	Tube Dwelling Anemone Ornate Tube Worm	Pachycerianthus s Diopatra Ornata
		Inverts	Tube Dwelling Anemone Ornate Tube Worm Giant Sea Star	Pachycerianthus s Diopatra Ornata Pisaster sp.
		Inverts	Tube Dwelling Anemone Ornate Tube Worm Giant Sea Star Sand Dollar	Pachycerianthus s Diopatra Ornata Pisaster sp. Dendraster excent
		Inverts	Tube Dwelling Anemone Ornate Tube Worm Giant Sea Star Sand Dollar Sea Pansy	Pachycerianthus s Diopatra Ornata Pisaster sp. Dendraster excent Ranilla sp.
		Inverts	Tube Dwelling Anemone Ornate Tube Worm Giant Sea Star Sand Dollar Sea Pansy	Pachycerianthus s Diopatra Ornata Pisaster sp. Dendraster excent Ranilla sp.
			Tube Dwelling Anemone Ornate Tube Worm Giant Sea Star Sand Dollar Sea Pansy Sea Pen	Pachycerianthus s Diopatra Ornata Pisaster sp. Dendraster excent Ranilla sp. Ptilosarcus sp
			Tube Dwelling Anemone Ornate Tube Worm Giant Sea Star Sand Dollar Sea Pansy Sea Pen Senorita	Pachycerianthus s Diopatra Ornata Pisaster sp. Dendraster excent Ranilla sp. Ptilosarcus sp Oxyjulis californica
			Tube Dwelling Anemone Ornate Tube Worm Giant Sea Star Sand Dollar Sea Pansy Sea Pen Senorita	Pachycerianthus s Diopatra Ornata Pisaster sp. Dendraster excent Ranilla sp. Ptilosarcus sp Oxyjulis californica
			Tube Dwelling Anemone Ornate Tube Worm Giant Sea Star Sand Dollar Sea Pansy Sea Pen Senorita	Pachycerianthus s Diopatra Ornata Pisaster sp. Dendraster excent Ranilla sp. Ptilosarcus sp Oxyjulis californica
			Tube Dwelling Anemone Ornate Tube Worm Giant Sea Star Sand Dollar Sea Pansy Sea Pen Senorita	Pachycerianthus s Diopatra Ornata Pisaster sp. Dendraster excent Ranilla sp. Ptilosarcus sp Oxyjulis californica

	Exotic species encountered:	No noxious weed (<i>Caulerpa taxifolia</i>) was observed anywhere in the vicinity of the study area. No least terns or brown pelicans were seen in the vicinity of the project area. No marine mammals were observed in the area prior to beginning the survey.
	Other site description notes:	Near coastal ocean site with no other vessels in the vicinity.
Description of Survey Effort: (please describe the surveys conducted including type of survey (SCUBA, remote video, etc.) and survey methods	Survey date and time period:	The survey was conducted on September 22, 2018 between 1240 and 1330 hrs. The survey was conducted by marine biologists
employed, date of work, and survey density (estimated percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.	Survey type and methods:	using SCUBA and agency-approved transect techniques for conducting the eelgrass and invasive algae survey. Field conditions noted during the survey included bottom type, common marine life, and the presence or absence of <i>Caulerpa</i> and eelgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station.
	Survey personnel:	Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine Biologist
	Horizontal visibility in water:	Dive conditions during the survey were good, with adequate light throughout the day and good visibility (5-7 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.
	Survey density:	Biologist-divers swam a continuous transect within the project area and approximately 15m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.
	Survey Limitations:	Near coastal ocean site, all necessary precautions were taken to insure the safety of the diver/biologists.

Other Information: (use	
this space to provide any	
additional information or	
references to attached	
materials such as maps,	See attached project figures.
reports, etc.)	Figure 1 Regional Project Location
T in the second s	Figure 1. Regional Project Location Figure 2. Dive Transects
	Tigure 2. Dive Transeets

Figure 1. Project Location. King Harbor, Los Angeles County, California

Figure 2. Project Survey Area and Diver Transects

Dear Ms. Louie,

Please find Anghera Environmental's eelgrass (*Zostera marina*) report for the Outer Harbor dredging site in King Harbor, California.

We did not find any eelgrass in the project area during this survey. Please do not hesitate to give me a call if you have any questions.

Sincerely,

M. Anghera

Mike Anghera Anghera Environmental President/Senior Marine Biologist

Zostera marina Survey Reporting Form Outer Harbor Dredging Project King Harbor, California Survey Date: September 22, 2018

Prepared for:

Lisa Louie

Senior Project Manager

Chambers Group, Inc.

5 Hutton Centre Drive, Suite 750, Santa Ana, CA 92707

t | 949.261.5414 x7289

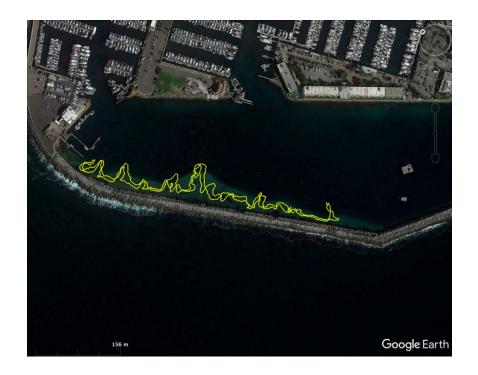
Prepared by: Anghera Environmental 1274 Alta Vista Drive, California 92084 Contact: Mike Anghera Senior Marine Biologist (805) 698-1004

This form is required to be submitted for any surveys conducted for the eelgrass, *Zostera marina*, that are required to be conducted under federal or state permits and authorizations issued by the U.S. Army Corps of Engineers and the Coastal Commission. The form has been designed to assist in identifying eelgrass while ensuring that the required information is consistently documented. Surveys required to be conducted for this species are subject to modification through publication of revisions to the eelgrass survey policy. It is incumbent upon the authorized permittee to ensure that survey work is following the latest protocols. For further information on these protocols, contact: Bryant Chesney National Marine Fisheries Service, 562-980-4037, or William Paznokas, California Department of Fish & Wildlife 858-467-4218.


Site Name: (common reference)	Outer Harbor Dredging Site, King Harbor, California. See Figure 1
Survey Contact: (name, phone, e-mail)	Mike Anghera, Senior Marine Biologist, Anghera Environmental. (805) 698 1004 <u>mikeanghera@gmail.com</u> Client Contact: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289
Permit Reference: (ACOE Permit No., CCC Permit No.)	TBD
Hydrographic System: (bay, estuary, lagoon, or harbor) Specific Location: (UTM, Lat./Long., datum, accuracy level, attach electronic survey area map if possible)	King Harbor, Los Angeles County, California. See Figure 1 33° 50' 55.94" N 118° 24' 05.51" W to 33° 50' 37.21" N 118° 23' 56.73"W NAD 83. Accuracy within 1 meter. See Figure 1
Was Eelgrass Detected:	
	NO, Eelgrass was not found at this site.
Description of Permitted Work: (describe briefly the work to be conducted at the site under the permits identified above)	Maintenance Dredging Project Source: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289

Description of Site: (describe the physical and biological conditions within the survey area at the time of the survey and provide insight into variability, if known. Please provide units for all numerical information).	Depth range:	from 21ft	e depths encountered on the main channel, to a factor of the main channel, to a factor of the mest.	Ũ	
	Substrate type and underwater visibility:	Hard packed coarse-grain sand, shell debris and rubble was observed in shallow zone of the stud site, while a mixture of fine sand and soft mudd sediment was present in the main channel. On all swim transects, we had an unobstructed view of the bottom. Turbidity throughout the study site was low with decent visibility, giving a clear view of the areal extent of the bottom.		ne of the study nd soft muddy hannel. nobstructed ughout the pility, giving us	
	Temperature:	The water temperature during the survey was 21.6° C (70.9° F).			
	Salinity:	Harbor Range: 25-33 ppt			
	Dominant flora:		Common Name	Scientific Name	
		Algae	Sea Grass	Phyllospadix torre	
			Corraline algae	Corralina sp.	
			Brown bubbles	Colpomenia sp.	
			Sargassum	Sargassum muticu	
			Seaweed	Dictyota sp.	
	Dominant		Common Name	Scientific Name	
	fauna:	Inverts	Sponges	Haliclona sp.	
			Sea Slugs	Navanax inermis	
			Oysters	Ostrea pacifica	
			Ornate Tube Worm	Diopatra Ornata	
			Sand Dollar	Dendraster excent	
			Lewis's Moon Snail	Neverita lewisii	
			Purple Olive Snail	Callianax biplicata	
			Sea Snail	Chlorostoma sp.	
			California Spiny Lobster	Panulirus interrup	
			Bubble Snail	Haminoea sp.	
			Western Banded Tegula	Tegula eiseni	
			Bubble Snail	Bulla sp.	
			Blue Banded Hermit Crab	Paugurus samueli.	

Dominant		Common Name	Scientific Name
fauna:		Round	
	Fish	Stingrays	Urobatis halleri
	1.511	Rainbow	
		Surfperch	Hypsurus sp.
		Opaleye Perch	Girella nigricans
		Kelp Bass	Paralabrax clathrantus
		Anchovies	Engraulis mordax
		Top Smelt	Atherinops affinis
		Sargo	Diplodus sp.
		Spotted Bay	
		Bass	Paralabrax masculatofascia
		Garibaldi	Hypsypops rubicundus
		Salema	Haemulon californiensis
		Fantail Sole	Xystreurys liolepsis
		Spotted Turbot	Pleuronichthys ritteri
		California	
		Halibut	Paralichthys californicus
		Rock Wrasse	Halichoeres semicinctus
		Black Surf	
		Perch	Embiotoca jacksoni
		Zebra Perch	Hermosilla azure
Exotic species encountered:	anywhere i or brown p area. No n	n the vicinity of th elicans were seen narine mammals	<i>a taxifolia</i>) was observed e study area . No least terns in the vicinity of the project were observed in the area
Other site		ginning the surve	y. nel with multiple vessels in
description notes:		t time of survey	iei with multiple vessels in


		1
Description of Survey Effort: (please describe the surveys conducted including type of survey	Survey date and time period:	The survey was conducted on September 22, 2018 between 0845 and 1025 hrs.
(SCUBA, remote video, etc.) and survey methods employed, date of work, and survey density (estimated percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.	Survey type and methods:	The survey was conducted by marine biologists using SCUBA and agency-approved transect techniques for conducting the eelgrass and invasive algae survey. Field conditions noted during the survey included bottom type, common marine life, and the presence or absence of <i>Caulerpa</i> and eelgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station.
	Survey personnel:	Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine Biologist
	Horizontal visibility in water:	Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.
	Survey density:	Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.
	Survey Limitations:	Multiple vessels operating in the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists.

Other Information: (use	
this space to provide any	
additional information or	
references to attached	
materials such as maps,	See attached project figures.
reports, etc.)	Figure 1. Regional Project Location
	Figure 2. Dive Transects
	Figure 1. Project Location.

King Harbor, Los Angeles County, California

Figure 2. Project Survey Area and Diver Transects

Dear Ms. Louie,

Please find Anghera Environmental's invasive algae (*Caulerpa taxifolia*) report for the Basin 3 Channel site in King Harbor.

Caulerpa sp. was not observed within the project site during this survey. Please do not hesitate to give me a call if you have any questions.

Sincerely,

M. Anghera

Mike Anghera Anghera Environmental President/Senior Marine Biologist

Caulerpa taxifolia Survey Reporting Form Basin 3 Channel Project King Harbor, California Survey Date: September 22, 2018

Prepared for:

Lisa Louie

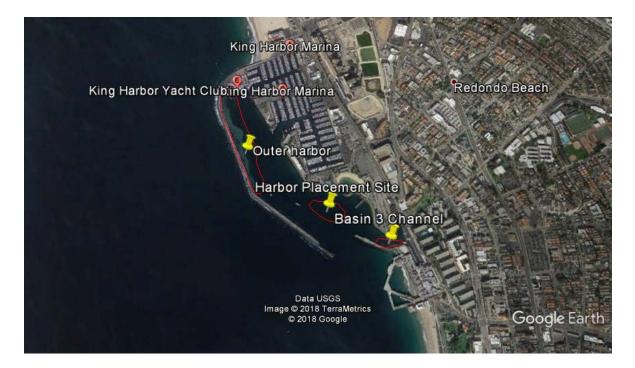
Senior Project Manager

Chambers Group, Inc.

5 Hutton Centre Drive, Suite 750, Santa Ana, CA 92707

t | 949.261.5414 x7289

Prepared by: Anghera Environmental 1274 Alta Vista Drive, California 92084 Contact: Mike Anghera Senior Marine Biologist 805 698 1004


This form is required to be submitted for any surveys conducted for the invasive exotic alga *Caulerpa taxifolia* that are required to be conducted under federal or state permits and authorizations issued by the U.S. Army Corps of Engineers or Regional Water Quality Control Boards (Regions 8 & 9). The form has been designed to assist in controlling the costs of reporting while ensuring that the required information necessary to identify and control any potential impacts of the authorized actions on the spread of *Caulerpa*. Surveys required to be conducted for this species are subject to modification through publication of revisions to the *Caulerpa* survey policy. It is incumbent upon the authorized permittee to ensure that survey work is following the latest protocols. For further information on these protocols, please contact: Bryant Chesney, National Marine Fisheries Service (NOAA Fisheries), (562) 980-4037, or William Paznokas, California Department of Fish & Wildlife (858) 467-4218).

Report Date:	October 10, 2018			
Name of bay, estuary, lagoon, or harbor:	King Harbor, Los Angeles County, California. See Figure 1 Basin 3 Channel, King Harbor, California. See Figure 1			
Specific Location Name:				
Site Coordinates: (UTM, Lat./Long., datum, accuracy level, and an electronic survey area map or hard copy of the map must be included).	33. 84179 ° N 118. 39200° W to 33. 84151 ° N 118. 39279° W NAD 83. Accuracy within 1 meter. See Figure 1			
Survey Contact: (name, phone, e-mail)	Mike Anghera, Senior Marine Biologist, Anghera Environmental (805) 698-1004 <u>mikeanghera@gmail.com</u> Client Contact: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289			
Personnel Conducting Survey (if other than above): name, phone, email	Mr. Mike Anghera (certified <i>Caulerpa</i> surveyor) Dr. Kimo Morris (certified <i>Caulerpa</i> surveyor)			
Permit Reference: (ACOE Permit No., RWQCB Order or Cert. No.)	TBD			
Is this the first or second survey for this project?	First			
Was Caulerpa Detected?: (if Caulerpa is found, please immediately contact NOAA Fisheries or CDFG personnel identified above)	NO			


Description of	Maintenance	Dredging]	Project		
Permitted	Source:				
Work: (describe	Lisa Louie				
briefly the work to	Chambers Group, Inc.				
be conducted at the	949.261.5414 x7289				
site under the permits identified					
above)					
Description of	Depth range: The depths encountered on the dive ranged from 13ft				
Site:	depth just south of the docks north of the main channel,			e	
			sloped exposed sandy bea		
(describe the	Substrate	Hard page	cked coarse-grain sand was	s observed in shallow zone	
physical and	type:			f fine sand and soft muddy	
biological conditions within		sedimen	t was present in the main c	hannel.	
the survey area at					
the time of the	Temperature:	The wate	er temperature during the s	urvey was 21.6° C (70.9° F).	
survey and provide					
insight into	Salinity:	Harbor I	Range: 25-33 ppt		
variability, if known. Please					
provide units for all	Dominant				
numerical	flora:		Common Name	Scientific Name	
information).	jiora.	Algae	Encrusting red algae	Corralina sp.	
			Common Name	Scientific Name	
	Dominant	Inverts	Common Name	Scientific Name	
	Dominant fauna:	Inverts	Tube Dwelling Anemone	Pachycerianthus sp.	
	Dominant fauna:	Inverts	Tube Dwelling AnemoneSea Slugs	Pachycerianthus sp. Navanax inermis	
		Inverts	Tube Dwelling AnemoneSea SlugsNudibranchs	Pachycerianthus sp. Navanax inermis Acanthodoris luteus	
		Inverts	Tube Dwelling AnemoneSea Slugs	Pachycerianthus sp. Navanax inermis	
		Inverts Fish	Tube Dwelling AnemoneSea SlugsNudibranchs	Pachycerianthus sp. Navanax inermis Acanthodoris luteus	
			 Tube Dwelling Anemone Sea Slugs Nudibranchs Oysters 	Pachycerianthus sp. Navanax inermis Acanthodoris luteus Ostrea pacifica	
			 Tube Dwelling Anemone Sea Slugs Nudibranchs Oysters Round Stingrays 	Pachycerianthus sp. Navanax inermis Acanthodoris luteus Ostrea pacifica Urobatis halleri	
			 Tube Dwelling Anemone Sea Slugs Nudibranchs Oysters Round Stingrays Rainbow Surfperch 	Pachycerianthus sp.Navanax inermisAcanthodoris luteusOstrea pacificaUrobatis halleriHypsurus sp.	
			 Tube Dwelling Anemone Sea Slugs Nudibranchs Oysters Round Stingrays Rainbow Surfperch Opaleye Perch 	Pachycerianthus sp.Navanax inermisAcanthodoris luteusOstrea pacificaUrobatis halleriHypsurus sp.Girella nigricans	
			 Tube Dwelling Anemone Sea Slugs Nudibranchs Oysters Round Stingrays Rainbow Surfperch Opaleye Perch Garibaldi 	Pachycerianthus sp.Navanax inermisAcanthodoris luteusOstrea pacificaUrobatis halleriHypsurus sp.Girella nigricansHypsypops rubicundus	
			 Tube Dwelling Anemone Sea Slugs Nudibranchs Oysters Round Stingrays Rainbow Surfperch Opaleye Perch Garibaldi Top Smelt 	Pachycerianthus sp.Navanax inermisAcanthodoris luteusOstrea pacificaUrobatis halleriHypsurus sp.Girella nigricansHypsypops rubicundusAtherinops affinis	

	Exotic species encountered (including any other	 The noxious weed (<i>Caulerpa taxifolia</i>) was NOT observed anywhere in the vicinity of the study area or reference site. No least terns or brown pelicans were seen in the vicinity of the project area.
	Caulerpa species):	No marine mammals were observed in the area prior to beginning the survey.
	Other site description notes:	Small channel with multiple vessels en route at time of survey
Description of Survey Effort: (please describe the surveys conducted including	Survey date and time period:	The survey was conducted on September 22, 2018 between 1200 and 1230 hrs.
type of survey (SCUBA, remote video, etc.) and survey methods employed, date of work, and survey density (estimated percentage of the bottom actually	Survey type and methods:	The survey was conducted by marine biologists using SCUBA and agency-approved transect techniques for conducting the eelgrass and invasive algae survey. Field conditions noted during the survey included bottom type, common marine life, and the presence or absence of Caulerpa and eelgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station.
viewed). Describe any limitations encountered during the survey efforts.	Survey personnel:	Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine Biologist
	Horizontal visibility in water:	Dive conditions during the survey were good, with adequate light throughout the day and good visibility (4-5 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.
	Survey density:	Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.
	Survey Limitations:	Multiple vessels operating in the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists.
Other Information: (use this space to provide any additional information or references to attached materials such as maps, reports, etc.)		See attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects

Figure 1. Project Location. King Harbor, Los Angeles County, California

Figure 2. Project Survey Area and Diver Transects

Dear Ms. Louie,

Please find Anghera Environmental's invasive algae (*Caulerpa taxifolia*) report for the Harbor Placement site in King Harbor.

Caulerpa sp. was not observed within the project site during this survey. Please do not hesitate to give me a call if you have any questions.

Sincerely,

M. Anghera

Mike Anghera Anghera Environmental President/Senior Marine Biologist

Caulerpa taxifolia Survey Reporting Form Harbor Placement Site King Harbor, California Survey Date: September 22, 2018

Prepared for:

Lisa Louie

Senior Project Manager

Chambers Group, Inc.

5 Hutton Centre Drive, Suite 750, Santa Ana, CA 92707

t | 949.261.5414 x7289

Prepared by: Anghera Environmental 1274 Alta Vista Drive, California 92084 Contact: Mike Anghera Senior Marine Biologist 805 698 1004

This form is required to be submitted for any surveys conducted for the invasive exotic alga *Caulerpa taxifolia* that are required to be conducted under federal or state permits and authorizations issued by the U.S. Army Corps of Engineers or Regional Water Quality Control Boards (Regions 8 & 9). The form has been designed to assist in controlling the costs of reporting while ensuring that the required information necessary to identify and control any potential impacts of the authorized actions on the spread of *Caulerpa*. Surveys required to be conducted for this species are subject to modification through publication of revisions to the *Caulerpa* survey policy. It is incumbent upon the authorized permittee to ensure that survey work is following the latest protocols. For further information on these protocols, please contact: Bryant Chesney, National Marine Fisheries Service (NOAA Fisheries), (562) 980-4037, or William Paznokas, California Department of Fish & Wildlife (858) 467-4218).

Report Date:	October 10, 2018 King Harbor, Los Angeles County, California. See Figure 1			
Name of bay, estuary, lagoon, or harbor:				
Specific Location Name:	Harbor Placement Site, King Harbor, California. See Figure 1			
Site Coordinates: (UTM, Lat./Long., datum, accuracy level, and an electronic survey area map or hard copy of the map must be included).	33° 50' 36.27" N 118° 23' 47.46" W to 33° 50' 31.50" N 118° 23' 38.83"W NAD 83. Accuracy within 1 meter. See Figure 1			
Survey Contact: (name, phone, e-mail)	Mike Anghera, Senior Marine Biologist, Anghera Environmental (805) 698-1004 <u>mikeanghera@gmail.com</u> Client Contact: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289			
Personnel Conducting Survey (if other than above): name, phone, email	Mr. Mike Anghera (certified <i>Caulerpa</i> surveyor) Dr. Kimo Morris (certified <i>Caulerpa</i> surveyor)			
Permit Reference: (ACOE Permit No., RWQCB Order or Cert. No.)	TBD			
Is this the first or second survey for this project?	First			
Was Caulerpa Detected?: (if Caulerpa is found, please immediately contact NOAA Fisheries or CDFG personnel identified above)	NO			

Description of	Maintenance	Dredging]	Project			
Permitted	Source:					
Work: (describe	Lisa Louie					
briefly the work to	Chambers Group, Inc.					
be conducted at the	949.261.5414 x7289					
site under the permits identified						
above)						
Description of	Depth range:					
Site:	- •F	The depths encountered on the dive ranged from 31ft to 39'				
(describe the	Substrate	Fine sand and soft muddy sediment was present in the study				
physical and	type:	area.				
biological conditions within						
the survey area at						
the time of the	Temperature:	The water temperature during the survey was 16.78° C (62.2° H				
survey and provide	Salinity:	Harbor Dangas 25, 22 ppt				
insight into variability, if	Saunuy.	Harbor Range: 25-33 ppt				
known. Please	<u> </u>		Common Name	Scientific Name		
provide units for all	Dominant	Algae	Red Sea Grapes	Botryocladia sp.		
numerical	flora:	Aigue				
information).						
			Common Name	Scientific Name		
	Dominant	Inverts	Tube Dwelling Anemone	Pachycerianthus sp.		
	fauna:		Sea Pen	Ptilosarcus sp		
			Sea Cucumber	Apostichopus californicus		
			Kellet's Whelk	Kelletia sp.		
			Mitre shells	Mitridae sp.		
			Bubble Snail	Haminoea sp.		
		Fish				
		Fish	Blue Banded Goby	Lythrypnus dalli		
		Fish	Blue Banded Goby Senorita	Lythrypnus dalli Oxyjulis californica		

	Exotic species encountered (including any other Caulerpa species): Other site	 The noxious weed (<i>Caulerpa taxifolia</i>) was NOT observed anywhere in the vicinity of the study area or reference site. No least terns or brown pelicans were seen in the vicinity of the project area. No marine mammals were observed in the area prior to beginning the survey. Medium navigational channel with multiple vessels in the area at the survey.
	description notes:	time of survey
Description of Survey Effort: (please describe the surveys conducted including	Survey date and time period:	The survey was conducted on September 22, 2018 between 1045 and 1130 hrs.
type of survey (SCUBA, remote video, etc.) and survey methods employed, date of work, and survey density (estimated percentage of the bottom actually	Survey type and methods:	The survey was conducted by marine biologists using SCUBA and agency-approved transect techniques for conducting the eelgrass and invasive algae survey. Field conditions noted during the survey included bottom type, common marine life, and the presence of absence of Caulerpa and eelgrass. Depths were standardized to fee (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station.
viewed). Describe any limitations encountered during the survey efforts.	Survey personnel:	Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine Biologist
	Horizontal visibility in water:	Dive conditions during the survey were good, with adequate ligh throughout the day and good visibility (2-3 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.
	Survey density:	Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transec locations.
	Survey Limitations:	Multiple vessels operating in the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists.
Other Information: (use this space to provide any additional information or references to attached materials such as maps, reports, etc.)		See attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects

Figure 2. Project Survey Area and Diver Transects

Dear Ms. Louie,

Please find Anghera Environmental's invasive algae (*Caulerpa taxifolia*) report for the Offshore Disposal area near King Harbor.

Caulerpa sp. was not observed within the project site during this survey. Please do not hesitate to give me a call if you have any questions.

Sincerely,

M. Anghera

Mike Anghera Anghera Environmental President/Senior Marine Biologist

Caulerpa taxifolia Survey Reporting Form Offshore Placement Area King Harbor, California Survey Date: September 22, 2018

Prepared for:

Lisa Louie

Senior Project Manager

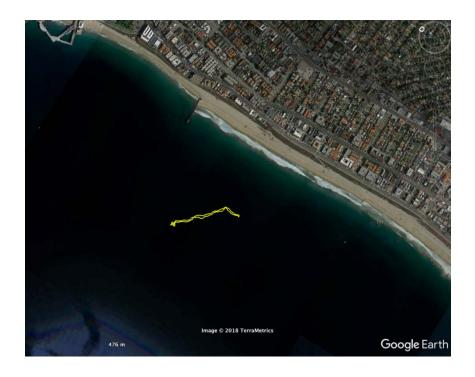
Chambers Group, Inc.

5 Hutton Centre Drive, Suite 750, Santa Ana, CA 92707

t | 949.261.5414 x7289

Prepared by: Anghera Environmental 1274 Alta Vista Drive, California 92084 Contact: Mike Anghera Senior Marine Biologist 805 698 1004

This form is required to be submitted for any surveys conducted for the invasive exotic alga *Caulerpa taxifolia* that are required to be conducted under federal or state permits and authorizations issued by the U.S. Army Corps of Engineers or Regional Water Quality Control Boards (Regions 8 & 9). The form has been designed to assist in controlling the costs of reporting while ensuring that the required information necessary to identify and control any potential impacts of the authorized actions on the spread of *Caulerpa*. Surveys required to be conducted for this species are subject to modification through publication of revisions to the *Caulerpa* survey policy. It is incumbent upon the authorized permittee to ensure that survey work is following the latest protocols. For further information on these protocols, please contact: Bryant Chesney, National Marine Fisheries Service (NOAA Fisheries), (562) 980-4037, or William Paznokas, California Department of Fish & Wildlife (858) 467-4218).


Report Date:	October 10, 2018 King Harbor, Los Angeles County, California. See Figure 1			
Name of bay, estuary, lagoon, or harbor:				
Specific Location Name:	Offshore Placement Area, King Harbor, California. See Figure 1			
Site Coordinates: (UTM, Lat./Long., datum, accuracy level, and an electronic survey area map or hard copy of the map must be included).	33° 49' 42.97" N 118° 23' 54.18" W to 33° 49' 42.27" N 118° 23' 42.26"W NAD 83. Accuracy within 1 meter. See Figure 1			
Survey Contact: (name, phone, e-mail)	Mike Anghera, Senior Marine Biologist, Anghera Environmental (805) 698-1004 <u>mikeanghera@gmail.com</u> Client Contact: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289			
Personnel Conducting Survey (if other than above): name, phone, email	Mr. Mike Anghera (certified <i>Caulerpa</i> surveyor) Dr. Kimo Morris (certified <i>Caulerpa</i> surveyor)			
Permit Reference: (ACOE Permit No., RWQCB Order or Cert. No.)	TBD			
Is this the first or second survey for this project?	First			
Was Caulerpa Detected?: (if Caulerpa is found, please immediately contact NOAA Fisheries or CDFG personnel identified above)	NO			

Description of Permitted Work: (describe briefly the work to be conducted at the site under the permits identified above) Description of Site:	Maintenance Dredging Project Source: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289 Depth range: The depths encountered on the dive ranged from 46ft to 38'					
(describe the physical and biological conditions within the survey area at the time of the survey and provide insight into variability, if known. Please provide units for all numerical information).	Substrate type: Temperature: Salinity:	Coarse sand was present throughout the study area. The water temperature during the survey was 17.44° C (63.4° F). Ocean Range: 32-33 ppt				
	Dominant flora:	No algae were observed. Common Name Scientific Name				
	Dominant fauna:	Inverts Inverts Fish	Tube Dwelling Anemone Ornate Tube Worm Giant Sea Star Sand Dollar Sea Pansy Sea Pen Senorita Kelp Bass	Pachycerianthus sp. Diopatra Ornata Pisaster sp. Dendraster excentricus Ranilla sp. Ptilosarcus sp Oxyjulis californica Paralabrax clathrantus		

	Exotic species encountered (including any other Caulerpa species):	The noxious weed (<i>Caulerpa taxifolia</i>) was NOT observed anywhere in the vicinity of the study area or reference site. No least terns or brown pelicans were seen in the vicinity of the project area. No marine mammals were observed in the area prior to beginning the survey.
	Other site description notes:	Near coastal ocean site with no other vessels in the vicinity.
Description of Survey Effort: (please describe the surveys conducted including	Survey date and time period:	The survey was conducted on September 22, 2018 between 1240 and 1330 hrs.
type of survey (SCUBA, remote video, etc.) and survey methods employed, date of work, and survey density (estimated percentage of the bottom actually	Survey type and methods:	The survey was conducted by marine biologists using SCUBA and agency-approved transect techniques for conducting the eelgrass and invasive algae survey. Field conditions noted during the survey included bottom type, common marine life, and the presence of absence of Caulerpa and eelgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station.
viewed). Describe any limitations encountered during the survey efforts.	Survey personnel:	Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine Biologist
the survey chorts.	Horizontal visibility in water:	Dive conditions during the survey were good, with adequate light throughout the day and good visibility (5-7 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.
	Survey density:	Biologist-divers swam a continuous transect within the project area and approximately 15m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.
	Survey Limitations:	Near coasta ocean site, all necessary precautions were taken to insure the safety of the diver/biologists.
Other Information: (use this space to provide any additional information or references to attached materials such as maps, reports, etc.)		See attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects

Figure 2. Project Survey Area and Diver Transects

October 10, 2018

Dear Ms. Louie,

Please find Anghera Environmental's invasive algae (*Caulerpa taxifolia*) report for the Outer Harbor dredging site in King Harbor.

Caulerpa sp. was not observed within the project site during this survey. Please do not hesitate to give me a call if you have any questions.

Sincerely,

M. Anghera

Mike Anghera Anghera Environmental President/Senior Marine Biologist

Anghera Environmental. 1274 Alta Vista Dr, Vista Ca 92084 805 698 1004 Caulerpa taxifolia Survey Reporting Form Outer Harbor Dredging Project King Harbor, California Survey Date: September 22, 2018

Prepared for:

Lisa Louie

Senior Project Manager

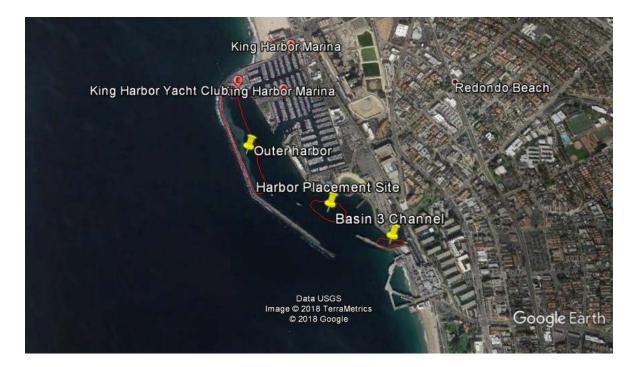
Chambers Group, Inc.

5 Hutton Centre Drive, Suite 750, Santa Ana, CA 92707

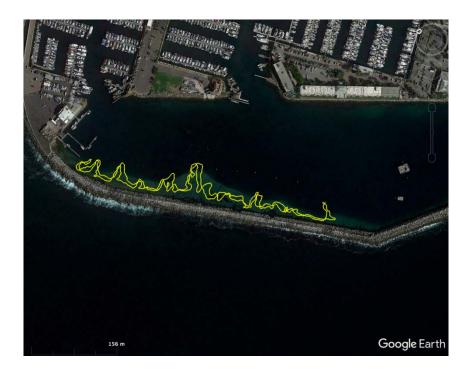
t | 949.261.5414 x7289

Prepared by: Anghera Environmental 1274 Alta Vista Drive, California 92084 Contact: Mike Anghera Senior Marine Biologist 805 698 1004

This form is required to be submitted for any surveys conducted for the invasive exotic alga *Caulerpa taxifolia* that are required to be conducted under federal or state permits and authorizations issued by the U.S. Army Corps of Engineers or Regional Water Quality Control Boards (Regions 8 & 9). The form has been designed to assist in controlling the costs of reporting while ensuring that the required information necessary to identify and control any potential impacts of the authorized actions on the spread of *Caulerpa*. Surveys required to be conducted for this species are subject to modification through publication of revisions to the *Caulerpa* survey policy. It is incumbent upon the authorized permittee to ensure that survey work is following the latest protocols. For further information on these protocols, please contact: Bryant Chesney, National Marine Fisheries Service (NOAA Fisheries), (562) 980-4037, or William Paznokas, California Department of Fish & Wildlife (858) 467-4218).


Report Date:	October 10, 2018		
Name of bay, estuary, lagoon, or harbor:	King Harbor, Los Angeles County, California. See Figure 1 Outer Harbor Dredging Site, King Harbor, California. See Figure 1		
Specific Location Name:			
Site Coordinates: (UTM, Lat./Long., datum, accuracy level, and an electronic survey area map or hard copy of the map must be included).	33° 50' 55.94" N 118° 24' 05.51" W to 33° 50' 37.21" N 118° 23' 56.73"W NAD 83. Accuracy within 1 meter. See Figure 1		
Survey Contact: (name, phone, e-mail)	Mike Anghera, Senior Marine Biologist, Anghera Environmental (805) 698-1004 <u>mikeanghera@gmail.com</u> Client Contact: Lisa Louie Chambers Group, Inc. 949.261.5414 x7289		
Personnel Conducting Survey (if other than above): name, phone, email	Mr. Mike Anghera (certified <i>Caulerpa</i> surveyor) Dr. Kimo Morris (certified <i>Caulerpa</i> surveyor)		
Permit Reference: (ACOE Permit No., RWQCB Order or Cert. No.)	TBD		
Is this the first or second survey for this project?			
Was Caulerpa Detected?: (if Caulerpa is found, please immediately contact NOAA Fisheries or CDFG personnel identified above)	NO		

Description of Permitted Work: (describe briefly the work to be conducted at the site under the	Maintenance Dredging ProjectSource:Lisa LouieChambers Group, Inc.949.261.5414 x7289					
permits identified above)						
Description of Site:	Depth range:	The depths encountered on the dive ranged from 21ft in the main channel, to a flat ledge at the base of the rip rap to the west.				
(describe the physical and biological conditions within the survey area at the time of the survey and provide insight into variability, if	Substrate type:	Hard packed coarse-grain sand, shell debris and rubble was observed in shallow zone of the study site, while a mixture of fine sand and soft muddy sediment was present in the main channel.				
	Temperature:	The water temperature during the survey was 21.6° C (70.9° F).				
	Salinity:	Harbor Range: 25-33 ppt				
known. Please			Common Name	Scientific Name		
provide units for all numerical	Dominant flora:	Algae	Sea Grass	Phyllospadix torrey		
information).			Corraline algae	Corralina sp.		
			Brown bubbles	Colpomenia sp.		
			Sargassum	Sargassum muticum		
			Seaweed	Dictyota sp.		
	Dominant fauna:		Common Name	Scientific Name		
	Č	Inverts	Sponges	Haliclona sp.		
			Sea Slugs	Navanax inermis		
			Oysters	Ostrea pacifica		
			Ornate Tube Worm	Diopatra Ornata		
			Sand Dollar	Dendraster excentricus		
			Lewis's Moon Snail	Neverita lewisii		
			Purple Olive Snail	Callianax biplicata		
			California Spiny Lobster	Panulirus interruptus		
			Western Banded Tegula	Tegula eiseni		
			Bubble Snail	Bulla sp.		
			Blue Banded Hermit Crab	Paugurus samuelis		


Dominant		Common Name	Scientific Name
fauna	Fish	Round Stingrays	Urobatis halleri
		Rainbow Surfperch	Hypsurus sp.
		Opaleye Perch	Girella nigricans
		Kelp Bass	Paralabrax clathrantus
		Anchovies	Engraulis mordax
		Top Smelt	Atherinops affinis
		Sargo	Diplodus sp.
			Paralabrax
		Spotted Bay Bass	masculatofasciatus
		Garibaldi	Hypsypops rubicundus
		Salema	Haemulon californiensis
		Fantail Sole	Xystreurys liolepsis
		Spotted Turbot	Pleuronichthys ritteri
		California Halibut	Paralichthys californicus
		Rock Wrasse	Halichoeres semicinctus
		Black Surf Perch	Embiotoca jacksoni
		Zebra Perch	Hermosilla azure
Exotic	The nov	ious weed (<i>Caulerna taxif</i> a	olia) was NOT observed anywhere
species encountered	 Inc notions weed (<i>cuaterpu taxifold</i>) was not robserved anywhere in the vicinity of the study area or reference site. No least terns or brown pelicans were seen in the vicinity of the project area. No marine mammals were observed in the area prior to beginning the survey. Medium navigational channel with multiple vessels in the area at time of survey 		
(including			
any other			
Caulerpa species):			
Other site			
description			
notes:			

Description of Survey Survey date and time period: The survey was conducted on September 22, 2018 between 0845 and 1025 hrs. Gescribe the surveys priod: period: The survey was conducted by marine biologists using SCUBA and agency-approved transect techniques for conducting the elegrass and invasive algae survey. Field conditions noted during the survey methods survey methods methods: The survey was conducted by marine biologists using SCUBA and agency-approved transect techniques for conducting the elegrass and invasive algae survey. Field conditions noted during the survey was conducted by marine biologist using SCUBA and agency-approved transect techniques for conducting the survey of classifies the presence or absence of Caulerpa and elegrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station. viewed). Describe any limitations Survey any limitations Personnel: Horizontal visibility in water: Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom.). On all swim transects, we had an unobstructed view of the bottom. Survey density: Survey density: Survey Limitations: Survey Limitations: Survey Survey Survey Survey Survey Limitations: Survey		Γ	
describe the surveys conducted including type of survey (SCUBA, remote video, etc.) and survey methods employed, date of work, and survey density (estimated percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.period: survey type and methods:The survey was conducted by marine biologists using SCUBA and agency-approved transect techniques for conducting the celgrass and invasive algae survey. Field conditions noted during the survey included bottom type, common marine life, and the presence or absence of Caulerpa and eelgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station. personnel:Survey any limitations encountered during the survey efforts.Survey personnel:Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine BiologistBiologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects			The survey was conducted on September 22, 2018 between 0845 and
conducted including type of survey (SCUBA, remote video, etc.) and survey methodsSurvey type and methods:The survey was conducted by marine biologists using SCUBA and agency-approved transect techniques for conducting the edgrass and invasive algae survey. Field conditions noted during the survey included bottom type, common marine life, and the presence or absence of Caulerpa and edgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station.work, and survey density (estimated percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.Survey personnel: Horizontal visibility in water:Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine Biologist Dr. Kimo Morris, Senior Marine Biologist (degrad during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom.Survey density:Survey density:Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom.Other Information: (use this space to provide any aiditional information or references to attached materials such asSee attached project figures, Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects			1025 hrs.
type of survey (SCUBA, remote video, etc.) and survey methods employed, date of work, and survey density (estimated percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.The survey was conducted by marine biologists using SCUBA and agency-approved transect techniques for conducting the edgrass and invasive algae survey. Field conditions noted during the survey included bottom type, common marine life, and the presence or absence of Caulerpa and edgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station.Wirewed). Describe any limitations encountered during the survey efforts.Survey personnel:Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine BiologistHorizontal visibility in water:Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom.) On all swim transects, we had an unobstructed view of the bottom.Survey density:Survey Limitations:Dive conditions during the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects		period:	
SCUBA, remote video, etc.) and survey methods employed, date of work, and survey density (estimated percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.Survey survey methods:agency-approved transect techniques for conducting the eelgrass and invasive algae survey. Field conditions noted during the survey included bottom type, common marine life, and the presence or absence of Caulerpa and eelgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station. personnel:Survey density:Survey personnel:Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine BiologistDive conditions during the survey were good, with adequate light visibility in water:Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.Survey density:Survey umitations:Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects			
video, etc.) and survey methodsand methods:and invasive algae survey. Field conditions noted during the survey included bottom type, common marine life, and the presence or absence of Caulerpa and eelgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station.work, and survey density (estimated percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.Survey personnel:Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine BiologistHorizontal visibility in water:Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.Survey density:Survey density:Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 1. Regional Project Area and Dive TransectsOther Information references to attached materials such asSee attached project figures. Figure 2. Project Area and Dive Transects	51 5		
survey methods methods: included bottom type, common marine life, and the presence or absence of Caulerpa and eelgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station. bottom actually viewed). Describe any limitations encountered during the survey efforts. Survey Mr. Mike Anghera, Senior Marine Biologist Horizontal visibility in water: Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom. Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations. Other Information: Survey Limitationsi See attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects		Survey type	
employed, date of work, and survey density (estimated percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.absence of Caulerpa and eelgrass. Depths were standardized to feet (ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station.Wr. Mike Anghera, Senior Marine Biologist any limitations encountered during the survey efforts.Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine BiologistHorizontal visibility in water:Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects			
work, and survey density (estimated percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.(ft) Mean Lower Low Water (MLLW) based upon time of observation and tidal corrections for the Los Angeles tidal station. Mr. Mike Anghera, Senior Marine Biologist personnel:Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine Biologist Mr. Mike Anghera, Senior Marine Biologist personnel:Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.Survey density:Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects	•	methods:	
density (estimated percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.Survey personnel:observation and tidal corrections for the Los Angeles tidal station. Horizontal visibility in water:Horizontal visibility in water:Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine Biologist Dive conditions during the survey were good, with adequate light visibility in water:Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.Survey density:Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects			
percentage of the bottom actually viewed). Describe any limitations encountered during the survey efforts.Survey personnel:Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine Biologist Dr. Kimo Morris, Senior Marine BiologistHorizontal visibility in water:Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects			
bottom actually viewed). Describe any limitations encountered during the survey efforts.Survey personnel:Mr. Mike Anghera, Senior Marine Biologist Dr. Kimo Morris, Senior Marine BiologistHorizontal visibility in water:Horizontal visibility in water:Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.Survey density:Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects			observation and tidal corrections for the Los Angeles tidal station.
viewed). Describe any limitations encountered during the survey efforts.Survey personnel:Mr. Mike Anghera, Senior Marine BiologistHorizontal visibility in water:Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects			
any limitations encountered during the survey efforts.personnel:Dr. Kimo Morris, Senior Marine BiologistHorizontal visibility in water:Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Survey Limitations:Multiple vessels operating in the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 2. Project Area and Dive Transects	-		
encountered during the survey efforts. Horizontal visibility in water: Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom. Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations. Survey Limitations: Other Information: (use this space to provide any additional information or references to attached materials such as	viewed). Describe	Survey	
the survey efforts. Horizontal visibility in water: Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom. Survey Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations. Survey Limitations: Survey Multiple vessels operating in the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists. Other Information: See attached project figures. (use this space to provide any additional information or references to attached materials such as See attached project Area and Dive Transects	any limitations	personnel:	Dr. Kimo Morris, Senior Marine Biologist
Horizontal visibility in water:Dive conditions during the survey were good, with adequate light throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.Survey density:Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Survey Limitations:Multiple vessels operating in the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects	encountered during		
visibility in water:throughout the day and good visibility (3-4 m in all directions on the bottom). On all swim transects, we had an unobstructed view of the bottom.Survey density:Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect 	the survey efforts.		
water:bottom). On all swim transects, we had an unobstructed view of the bottom.Survey density:Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Survey Limitations:Multiple vessels operating in the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 2. Project Area and Dive Transects		Horizontal	
bottom.Survey density:Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Survey Limitations:Multiple vessels operating in the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 2. Project Area and Dive Transects		visibility in	throughout the day and good visibility (3-4 m in all directions on the
Biologist-divers swam a continuous transect within the project area and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Survey Limitations:Multiple vessels operating in the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 2. Project Area and Dive Transects		water:	bottom). On all swim transects, we had an unobstructed view of the
Survey density:and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect locations.Survey Limitations:Multiple vessels operating in the study area during survey, necessary precautions were taken to insure the safety of the diver/biologists.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 2. Project Area and Dive Transects			bottom.
Limitations:precautions were taken to insure the safety of the diver/biologists.Other Information: (use this space to provide any additional information or references to attached materials such asSee attached project figures. Figure 1. Regional Project Location Figure 2. Project Area and Dive Transects		•	and approximately 5m beyond where possible. Approximately 90% of the project area was surveyed. Refer to Figure 2 for transect
Other Information: See attached project figures. (use this space to Figure 1. Regional Project Location provide any Figure 2. Project Area and Dive Transects additional information or references to attached materials such as		Survey	
(use this space to Figure 1. Regional Project Location provide any Figure 2. Project Area and Dive Transects additional information or references to attached How and the second sec		Limitations:	precautions were taken to insure the safety of the diver/biologists.
(use this space to Figure 1. Regional Project Location provide any Figure 2. Project Area and Dive Transects additional information or references to attached How and the second sec	Other Information:		See attached project figures.
provide any Figure 2. Project Area and Dive Transects additional information or references to attached materials such as			
additional information or references to attached materials such as	· •		
information or references to attached materials such as			- igute 2. i roject freu unu prie i runisectis
references to attached materials such as			
materials such as			
	TT , T		

Figure 1. Project Location. King Harbor, Los Angeles County, California

Figure 2. Project Survey Area and Diver Transects

201 Alameda Del Prado, Suite 301 Novato, CA 94949 (415) 884-0727 Fax (415) 884-0735 Ronald M. Noble, P.E., President DESIGN

Attachment E

Exemption Declaration Pursuant to the California Environmental Quality Act

by the City of Redondo Beach

CITY OF REDONDO BEACH

EXEMPTION DECLARATION PURSUANT TO THE CALIFORNIA ENVIRONMENTAL QUALITY ACT

DATE: June 8, 2020

PROJECT LOCATION: King Harbor, Redondo Beach

PROPOSED PROJECT: The King Harbor Maintenance Dredging Project will remove shoals accumulated within King Harbor to provide safe vessel access to recreational craft and fishing boats. The proposed dredge volumes are approximately 46,300 cubic yards to the design depth, and 62,000 cubic yards when including the two-foot over dredge depth. A Sampling and Analysis Plan as well as the in-harbor and outer harbor placement of the dredging materials was reviewed and approved by the U.S. Army Corps of Engineers. A more detailed description is attached.

In accordance with Chapter 3, Title 10, Section 10-3.301(a) of the Redondo Beach Municipal Code, the above-referenced project is Categorically Exempt from the requirement for preparation of environmental review documents pursuant to:

Section 15300.1 of the Guidelines for Implementation of the California Environmental Quality Act (CEQA), which states, in part, that Section 21080 of the Public Resources Code exempts from the application of CEQA those projects over which public agencies exercise only ministerial authority. Since ministerial projects are already exempt, Categorical Exemptions should be applied only where a project is not ministerial under a public agency's statutes and ordinances.

This finding is supported by the fact that as a repair and maintenance activity, the project is exempt from issuance of a Coastal Development Permit (RBMC 10-5.2208 (a) (3)). The project involves routine maintenance dredging of 62,000 cubic yards. The last maintenance dredging occurred in 2004-2005. The placement of dredge spoils is not within an environmentally sensitive habitat area, or any sand area, within fifty (50) feet of the edge of a coastal bluff or environmentally sensitive habitat area, or within (20) twenty feet of coastal waters or streams. The removal and disposal of dredged spoils are not suitable for beach nourishment for any area in need of sand supply. As such, the dredging project is exempt from the requirement of a Coastal Development Permit and is thereby a ministerial action.

King Harbor is not designated as an historical resource. The dredging project is not a successive activity that will cause cumulative effects nor will the project cause significant effects due to unusual circumstances. The subject site is not located within an area designated as an environmental resource of hazardous or critical concern, or within an officially designated, state scenic highway, or within a hazardous waste site included on any list compiled pursuant to Section 65962.5 of the Government Code.

Brandy Forbes, AICP